|
| 1 | +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. */ |
| 14 | + |
| 15 | +#include "paddle/fluid/framework/tensor.h" |
| 16 | +#include "paddle/fluid/operators/fc_op.h" |
| 17 | +#include "paddle/fluid/platform/device_context.h" |
| 18 | +#include "paddle/fluid/platform/mkldnn_helper.h" |
| 19 | + |
| 20 | +namespace paddle { |
| 21 | +namespace operators { |
| 22 | + |
| 23 | +using paddle::framework::Tensor; |
| 24 | +using paddle::platform::MKLDNNDeviceContext; |
| 25 | + |
| 26 | +template <typename T> |
| 27 | +class MKLDNNMD { |
| 28 | + public: |
| 29 | + explicit MKLDNNMD(const T* in, const T* w, bool bias) |
| 30 | + : in{paddle::framework::vectorize2int(in->dims())}, |
| 31 | + w{paddle::framework::vectorize2int(w->dims())} { |
| 32 | + with_bias_ = bias; |
| 33 | + } |
| 34 | + |
| 35 | + mkldnn::memory::desc dst() const { |
| 36 | + return platform::MKLDNNMemDesc({in[0], w[1]}, |
| 37 | + mkldnn::memory::data_type::f32, |
| 38 | + mkldnn::memory::format::nc); |
| 39 | + } |
| 40 | + |
| 41 | + mkldnn::memory::desc src() const { |
| 42 | + return is_spatial() |
| 43 | + ? platform::MKLDNNMemDesc({in[0], in[1], in[2], in[3]}, |
| 44 | + mkldnn::memory::data_type::f32, |
| 45 | + mkldnn::memory::format::nchw) |
| 46 | + : platform::MKLDNNMemDesc({in[0], in[1]}, |
| 47 | + mkldnn::memory::data_type::f32, |
| 48 | + mkldnn::memory::format::nc); |
| 49 | + } |
| 50 | + |
| 51 | + mkldnn::memory::desc weights() const { |
| 52 | + return is_spatial() |
| 53 | + ? platform::MKLDNNMemDesc({w[1], in[1], in[2], in[3]}, |
| 54 | + mkldnn::memory::data_type::f32, |
| 55 | + mkldnn::memory::format::oihw) |
| 56 | + : platform::MKLDNNMemDesc({w[1], in[1]}, |
| 57 | + mkldnn::memory::data_type::f32, |
| 58 | + mkldnn::memory::format::oi); |
| 59 | + } |
| 60 | + |
| 61 | + mkldnn::memory::desc bias() const { |
| 62 | + return with_bias_ |
| 63 | + ? platform::MKLDNNMemDesc({w[1]}, mkldnn::memory::data_type::f32, |
| 64 | + mkldnn::memory::format::format_undef) |
| 65 | + : platform::MKLDNNMemDesc({}, mkldnn::memory::data_type::f32, |
| 66 | + mkldnn::memory::format::format_undef); |
| 67 | + } |
| 68 | + |
| 69 | + private: |
| 70 | + bool is_spatial() const { return in.size() > 1 && w.size() > 1; } |
| 71 | + |
| 72 | + std::vector<int> in; |
| 73 | + std::vector<int> w; |
| 74 | + bool with_bias_; |
| 75 | + bool is_spatial_; |
| 76 | +}; |
| 77 | + |
| 78 | +class MKLDNNMemory { |
| 79 | + public: |
| 80 | + MKLDNNMemory(MKLDNNMD<Tensor>* t, const mkldnn::engine& e) |
| 81 | + : md_{t}, engine_{e} {} |
| 82 | + virtual ~MKLDNNMemory() = default; |
| 83 | + |
| 84 | + template <typename Output> |
| 85 | + mkldnn::memory dst(const Output* out) { |
| 86 | + return mkldnn::memory({md_->dst(), engine_}, |
| 87 | + static_cast<void*>(const_cast<float*>(out))); |
| 88 | + } |
| 89 | + |
| 90 | + template <typename Output> |
| 91 | + mkldnn::memory dst(Output* out) { |
| 92 | + return mkldnn::memory({md_->dst(), engine_}, out); |
| 93 | + } |
| 94 | + |
| 95 | + template <typename Input> |
| 96 | + mkldnn::memory src(const Input* in) { |
| 97 | + return mkldnn::memory({md_->src(), engine_}, |
| 98 | + static_cast<void*>(const_cast<float*>(in))); |
| 99 | + } |
| 100 | + |
| 101 | + template <typename Weight> |
| 102 | + mkldnn::memory weights(const Weight* w) { |
| 103 | + return mkldnn::memory({md_->weights(), engine_}, |
| 104 | + static_cast<void*>(const_cast<float*>(w))); |
| 105 | + } |
| 106 | + |
| 107 | + mkldnn::memory bias() { |
| 108 | + return mkldnn::memory(mkldnn::memory::primitive_desc(md_->bias(), engine_)); |
| 109 | + } |
| 110 | + |
| 111 | + private: |
| 112 | + MKLDNNMD<Tensor>* md_; |
| 113 | + const mkldnn::engine& engine_; |
| 114 | +}; |
| 115 | + |
| 116 | +template <typename T> |
| 117 | +class FCMKLDNNOpKernel : public paddle::framework::OpKernel<T> { |
| 118 | + void Compute(const paddle::framework::ExecutionContext& ctx) const override { |
| 119 | + PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), |
| 120 | + "It must use CPUPlace."); |
| 121 | + |
| 122 | + auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>(); |
| 123 | + const auto& mkldnn_engine = dev_ctx.GetEngine(); |
| 124 | + |
| 125 | + auto input = ctx.Input<Tensor>("Input"); |
| 126 | + auto w = ctx.Input<Tensor>("W"); |
| 127 | + |
| 128 | + PADDLE_ENFORCE(input->dims().size() == 2 || input->dims().size() == 4, |
| 129 | + "Input must be with 2 or 4 dimensions, i.e. NCHW"); |
| 130 | + PADDLE_ENFORCE(w->dims().size() == 2 || w->dims().size() == 4, |
| 131 | + "Weights must be with 2 or 4 dimensions, i.e. OI or OIHW"); |
| 132 | + |
| 133 | + bool with_bias = ctx.Attr<bool>("bias_attr"); |
| 134 | + MKLDNNMD<Tensor> md(input, w, with_bias); |
| 135 | + |
| 136 | + std::shared_ptr<mkldnn::inner_product_forward::primitive_desc> pd = |
| 137 | + FcFwdPrimitiveDesc(md.src(), md.weights(), md.dst(), md.bias(), |
| 138 | + with_bias, mkldnn_engine); |
| 139 | + |
| 140 | + const std::string key = ctx.op().Output("Out"); |
| 141 | + const std::string key_fc_pd = key + "@fc_pd"; |
| 142 | + |
| 143 | + dev_ctx.SetBlob(key_fc_pd, pd); |
| 144 | + |
| 145 | + MKLDNNMemory mem(&md, mkldnn_engine); |
| 146 | + |
| 147 | + const T* input_data = input->data<T>(); |
| 148 | + const T* w_data = w->data<T>(); |
| 149 | + |
| 150 | + auto output = ctx.Output<Tensor>("Out"); |
| 151 | + T* output_data = output->mutable_data<T>(ctx.GetPlace()); |
| 152 | + |
| 153 | + auto dst_memory = mem.dst(output_data); |
| 154 | + auto src_memory = mem.src(input_data); |
| 155 | + auto weights_memory = mem.weights(w_data); |
| 156 | + auto bias_memory = mem.bias(); |
| 157 | + |
| 158 | + auto forward = with_bias ? mkldnn::inner_product_forward( |
| 159 | + *pd, src_memory, weights_memory, bias_memory, |
| 160 | + dst_memory) |
| 161 | + : mkldnn::inner_product_forward( |
| 162 | + *pd, src_memory, weights_memory, dst_memory); |
| 163 | + |
| 164 | + std::vector<mkldnn::primitive> pipeline = {forward}; |
| 165 | + mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); |
| 166 | + } |
| 167 | + |
| 168 | + private: |
| 169 | + std::unique_ptr<mkldnn::inner_product_forward::primitive_desc> |
| 170 | + FcFwdPrimitiveDesc(const mkldnn::memory::desc& src, |
| 171 | + const mkldnn::memory::desc& weights, |
| 172 | + const mkldnn::memory::desc& dst, |
| 173 | + const mkldnn::memory::desc& bias, const bool with_bias, |
| 174 | + const mkldnn::engine& engine) const { |
| 175 | + auto desc = with_bias |
| 176 | + ? mkldnn::inner_product_forward::desc( |
| 177 | + mkldnn::prop_kind::forward, src, weights, bias, dst) |
| 178 | + : mkldnn::inner_product_forward::desc( |
| 179 | + mkldnn::prop_kind::forward, src, weights, dst); |
| 180 | + |
| 181 | + auto pd = new mkldnn::inner_product_forward::primitive_desc(desc, engine); |
| 182 | + return std::unique_ptr<mkldnn::inner_product_forward::primitive_desc>(pd); |
| 183 | + } |
| 184 | +}; |
| 185 | + |
| 186 | +template <typename T> |
| 187 | +class FCMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> { |
| 188 | + public: |
| 189 | + void Compute(const paddle::framework::ExecutionContext& ctx) const override { |
| 190 | + PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), |
| 191 | + "It must use CPUPlace."); |
| 192 | + |
| 193 | + auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>(); |
| 194 | + const auto& mkldnn_engine = dev_ctx.GetEngine(); |
| 195 | + |
| 196 | + T* input_grad_data = nullptr; |
| 197 | + T* w_grad_data = nullptr; |
| 198 | + |
| 199 | + Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input")); |
| 200 | + Tensor* w_grad = ctx.Output<Tensor>(framework::GradVarName("W")); |
| 201 | + |
| 202 | + if (input_grad) { |
| 203 | + input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace()); |
| 204 | + } |
| 205 | + if (w_grad) { |
| 206 | + w_grad_data = w_grad->mutable_data<T>(ctx.GetPlace()); |
| 207 | + } |
| 208 | + |
| 209 | + const Tensor* input = ctx.Input<Tensor>("Input"); |
| 210 | + const T* input_data = input->data<T>(); |
| 211 | + |
| 212 | + const Tensor* w = ctx.Input<Tensor>("W"); |
| 213 | + const T* w_data = w->data<T>(); |
| 214 | + |
| 215 | + const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out")); |
| 216 | + const T* out_grad_data = out_grad->data<T>(); |
| 217 | + |
| 218 | + bool with_bias = ctx.Attr<bool>("bias_attr"); |
| 219 | + |
| 220 | + MKLDNNMD<Tensor> md(input, w, with_bias); |
| 221 | + MKLDNNMemory mem(&md, mkldnn_engine); |
| 222 | + |
| 223 | + auto dst_memory = mem.dst(out_grad_data); |
| 224 | + auto src_memory = mem.src(input_data); |
| 225 | + auto weights_memory = mem.weights(w_data); |
| 226 | + auto bias_memory = mem.bias(); |
| 227 | + |
| 228 | + const std::string key = ctx.op().Input("Out"); |
| 229 | + const std::string key_fc_pd = key + "@fc_pd"; |
| 230 | + |
| 231 | + auto pd = |
| 232 | + std::static_pointer_cast<mkldnn::inner_product_forward::primitive_desc>( |
| 233 | + dev_ctx.GetBlob(key_fc_pd)); |
| 234 | + |
| 235 | + PADDLE_ENFORCE(pd != nullptr, "Fail to find key_fc_pd in device context"); |
| 236 | + |
| 237 | + if (w_grad) { |
| 238 | + auto weights_grad_memory = mem.weights(w_grad_data); |
| 239 | + |
| 240 | + mkldnn::inner_product_backward_weights::primitive_desc bwd_weight_pd = |
| 241 | + FcBwdWeightsPrimitiveDesc(md.src(), md.weights(), md.dst(), md.bias(), |
| 242 | + with_bias, *pd, mkldnn_engine); |
| 243 | + |
| 244 | + auto bwd_weights_prim = mkldnn::inner_product_backward_weights( |
| 245 | + bwd_weight_pd, src_memory, dst_memory, weights_grad_memory, |
| 246 | + bias_memory); |
| 247 | + |
| 248 | + std::vector<mkldnn::primitive> pipeline{bwd_weights_prim}; |
| 249 | + mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); |
| 250 | + } |
| 251 | + |
| 252 | + if (input_grad) { |
| 253 | + auto src_grad_memory = mem.src(input_grad_data); |
| 254 | + |
| 255 | + mkldnn::inner_product_backward_data::primitive_desc bwd_data_pd = |
| 256 | + FcBwdDataPrimitiveDesc(md.src(), md.weights(), md.dst(), *pd, |
| 257 | + mkldnn_engine); |
| 258 | + |
| 259 | + auto bwd_data_prim = mkldnn::inner_product_backward_data( |
| 260 | + bwd_data_pd, dst_memory, weights_memory, src_grad_memory); |
| 261 | + |
| 262 | + std::vector<mkldnn::primitive> pipeline{bwd_data_prim}; |
| 263 | + mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); |
| 264 | + } |
| 265 | + } |
| 266 | + |
| 267 | + private: |
| 268 | + mkldnn::inner_product_backward_weights::primitive_desc |
| 269 | + FcBwdWeightsPrimitiveDesc( |
| 270 | + const mkldnn::memory::desc& src, const mkldnn::memory::desc& diff_weights, |
| 271 | + const mkldnn::memory::desc& diff_dst, const mkldnn::memory::desc& bias, |
| 272 | + const bool with_bias, |
| 273 | + const mkldnn::inner_product_forward::primitive_desc& pd, |
| 274 | + const mkldnn::engine& engine) const { |
| 275 | + auto bwd_weight_desc = with_bias |
| 276 | + ? mkldnn::inner_product_backward_weights::desc( |
| 277 | + src, diff_weights, bias, diff_dst) |
| 278 | + : mkldnn::inner_product_backward_weights::desc( |
| 279 | + src, diff_weights, bias, diff_dst); |
| 280 | + |
| 281 | + return mkldnn::inner_product_backward_weights::primitive_desc( |
| 282 | + bwd_weight_desc, engine, pd); |
| 283 | + } |
| 284 | + |
| 285 | + mkldnn::inner_product_backward_data::primitive_desc FcBwdDataPrimitiveDesc( |
| 286 | + const mkldnn::memory::desc& diff_src, const mkldnn::memory::desc& weights, |
| 287 | + const mkldnn::memory::desc& diff_dst, |
| 288 | + const mkldnn::inner_product_forward::primitive_desc& pd, |
| 289 | + const mkldnn::engine& engine) const { |
| 290 | + auto bwd_data_desc = |
| 291 | + mkldnn::inner_product_backward_data::desc(diff_src, weights, diff_dst); |
| 292 | + return mkldnn::inner_product_backward_data::primitive_desc(bwd_data_desc, |
| 293 | + engine, pd); |
| 294 | + } |
| 295 | +}; |
| 296 | +} // namespace operators |
| 297 | +} // namespace paddle |
| 298 | + |
| 299 | +REGISTER_OP_KERNEL(fc, MKLDNN, ::paddle::platform::CPUPlace, |
| 300 | + paddle::operators::FCMKLDNNOpKernel<float>); |
| 301 | + |
| 302 | +REGISTER_OP_KERNEL(fc_grad, MKLDNN, ::paddle::platform::CPUPlace, |
| 303 | + paddle::operators::FCMKLDNNGradOpKernel<float>); |
0 commit comments