Skip to content

Commit b41f8b9

Browse files
authored
Merge pull request #12295 from jacquesqiao/speedup-reduce-sum-grad-op
Speedup reduce sum grad op
2 parents eec412b + 273f737 commit b41f8b9

File tree

4 files changed

+137
-32
lines changed

4 files changed

+137
-32
lines changed

paddle/fluid/operators/reduce_sum_op.cc

Lines changed: 10 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -23,12 +23,13 @@ REGISTER_OP_CPU_KERNEL(
2323
ops::ReduceKernel<paddle::platform::CPUDeviceContext, int, ops::SumFunctor>,
2424
ops::ReduceKernel<paddle::platform::CPUDeviceContext, int64_t,
2525
ops::SumFunctor>);
26-
REGISTER_OP_CPU_KERNEL(reduce_sum_grad,
27-
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
28-
float, ops::SumGradFunctor>,
29-
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
30-
double, ops::SumGradFunctor>,
31-
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
32-
int, ops::SumGradFunctor>,
33-
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
34-
int64_t, ops::SumGradFunctor>);
26+
REGISTER_OP_CPU_KERNEL(
27+
reduce_sum_grad,
28+
ops::ReduceSumGradKernel<paddle::platform::CPUDeviceContext, float,
29+
ops::SumGradFunctor>,
30+
ops::ReduceSumGradKernel<paddle::platform::CPUDeviceContext, double,
31+
ops::SumGradFunctor>,
32+
ops::ReduceSumGradKernel<paddle::platform::CPUDeviceContext, int,
33+
ops::SumGradFunctor>,
34+
ops::ReduceSumGradKernel<paddle::platform::CPUDeviceContext, int64_t,
35+
ops::SumGradFunctor>);

paddle/fluid/operators/reduce_sum_op.h

Lines changed: 59 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,11 +14,69 @@
1414

1515
#pragma once
1616

17+
#include <vector>
18+
1719
#include "paddle/fluid/operators/reduce_op.h"
1820

1921
namespace paddle {
2022
namespace operators {
2123

24+
// use for loop to speed up Eigen broadcast. 4 timer faster then broadcast
25+
template <typename DeviceContext, typename T, typename Functor>
26+
class ReduceSumGradKernel : public framework::OpKernel<T> {
27+
public:
28+
void Compute(const framework::ExecutionContext& context) const override {
29+
auto dims = context.Attr<std::vector<int>>("dim");
30+
if (context.GetPlace().type() == typeid(platform::CPUPlace) &&
31+
dims.size() == 1) {
32+
auto* input0 = context.Input<Tensor>("X");
33+
auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
34+
auto* output = context.Output<Tensor>(framework::GradVarName("X"));
35+
output->mutable_data<T>(context.GetPlace());
36+
const auto* input2_d = input2->data<T>();
37+
auto* output_d = output->data<T>();
38+
39+
// handle reduce_all
40+
if (input2->dims().size() == 1 && input2->dims()[0] == 1) {
41+
for (int64_t i = 0; i < framework::product(input0->dims()); ++i) {
42+
output_d[i] = input2_d[0];
43+
}
44+
return;
45+
}
46+
47+
// handle reduce by one dimension
48+
int reduce_dim_index = dims[0];
49+
if (reduce_dim_index < 0) {
50+
reduce_dim_index += input0->dims().size();
51+
}
52+
53+
auto& input_dim = input0->dims();
54+
int64_t before_dim = 1;
55+
for (int i = 0; i < reduce_dim_index; ++i) {
56+
before_dim *= input_dim[i];
57+
}
58+
int64_t reduce_dim = input_dim[reduce_dim_index];
59+
int64_t after_dim = 1;
60+
for (int i = reduce_dim_index + 1; i < input_dim.size(); ++i) {
61+
after_dim *= input_dim[i];
62+
}
63+
for (int64_t i = 0; i < before_dim; ++i) {
64+
for (int64_t j = 0; j < reduce_dim; ++j) {
65+
for (int64_t k = 0; k < after_dim; ++k) {
66+
output_d[i * reduce_dim * after_dim + j * after_dim + k] =
67+
input2_d[i * after_dim + k];
68+
}
69+
}
70+
}
71+
return;
72+
}
73+
74+
// default use Eigen broadcast
75+
ReduceGradKernel<DeviceContext, T, Functor> kernel;
76+
kernel.Compute(context);
77+
}
78+
};
79+
2280
struct SumFunctor {
2381
template <typename DeviceContext, typename X, typename Y, typename Dim>
2482
void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
@@ -31,7 +89,7 @@ struct SumGradFunctor {
3189
typename DY, typename Dim>
3290
void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
3391
const Dim& dim, int size) {
34-
dx->device(place) = dy->broadcast(dim);
92+
dx->device(place) = dy->eval().broadcast(dim);
3593
}
3694
};
3795

python/paddle/fluid/layers/nn.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2961,7 +2961,7 @@ def reduce_sum(input, dim=None, keep_dim=False, name=None):
29612961
# x is a Tensor variable with following elements:
29622962
# [[0.2, 0.3, 0.5, 0.9]
29632963
# [0.1, 0.2, 0.6, 0.7]]
2964-
# Each example is followed by the correspending output tensor.
2964+
# Each example is followed by the corresponding output tensor.
29652965
fluid.layers.reduce_sum(x) # [3.5]
29662966
fluid.layers.reduce_sum(x, dim=0) # [0.3, 0.5, 1.1, 1.6]
29672967
fluid.layers.reduce_sum(x, dim=-1) # [1.9, 1.6]
@@ -2970,7 +2970,7 @@ def reduce_sum(input, dim=None, keep_dim=False, name=None):
29702970
# x is a Tensor variable with shape [2, 2, 2] and elements as below:
29712971
# [[[1, 2], [3, 4]],
29722972
# [[5, 6], [7, 8]]]
2973-
# Each example is followed by the correspending output tensor.
2973+
# Each example is followed by the corresponding output tensor.
29742974
fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
29752975
fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]
29762976

python/paddle/fluid/tests/unittests/test_reduce_op.py

Lines changed: 66 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -89,15 +89,11 @@ def test_check_grad(self):
8989
self.check_grad(['X'], 'Out')
9090

9191

92-
class TestKeepDimReduce(OpTest):
92+
class Test1DReduce(OpTest):
9393
def setUp(self):
9494
self.op_type = "reduce_sum"
95-
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
96-
self.attrs = {'dim': [-2], 'keep_dim': True}
97-
self.outputs = {
98-
'Out':
99-
self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True)
100-
}
95+
self.inputs = {'X': np.random.random(20).astype("float64")}
96+
self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
10197

10298
def test_check_output(self):
10399
self.check_output()
@@ -106,32 +102,82 @@ def test_check_grad(self):
106102
self.check_grad(['X'], 'Out')
107103

108104

109-
class Test1DReduce(OpTest):
105+
class Test2DReduce0(Test1DReduce):
110106
def setUp(self):
111107
self.op_type = "reduce_sum"
112-
self.inputs = {'X': np.random.random(20).astype("float64")}
108+
self.attrs = {'dim': [0]}
109+
self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
113110
self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
114111

115-
def test_check_output(self):
116-
self.check_output()
117112

118-
def test_check_grad(self):
119-
self.check_grad(['X'], 'Out')
113+
class Test2DReduce1(Test1DReduce):
114+
def setUp(self):
115+
self.op_type = "reduce_sum"
116+
self.attrs = {'dim': [1]}
117+
self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
118+
self.outputs = {
119+
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
120+
}
120121

121122

122-
class TestReduceAll(OpTest):
123+
class Test3DReduce0(Test1DReduce):
124+
def setUp(self):
125+
self.op_type = "reduce_sum"
126+
self.attrs = {'dim': [1]}
127+
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
128+
self.outputs = {
129+
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
130+
}
131+
132+
133+
class Test3DReduce1(Test1DReduce):
134+
def setUp(self):
135+
self.op_type = "reduce_sum"
136+
self.attrs = {'dim': [2]}
137+
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
138+
self.outputs = {
139+
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
140+
}
141+
142+
143+
class Test3DReduce2(Test1DReduce):
144+
def setUp(self):
145+
self.op_type = "reduce_sum"
146+
self.attrs = {'dim': [-2]}
147+
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
148+
self.outputs = {
149+
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
150+
}
151+
152+
153+
class Test3DReduce3(Test1DReduce):
154+
def setUp(self):
155+
self.op_type = "reduce_sum"
156+
self.attrs = {'dim': [1, 2]}
157+
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
158+
self.outputs = {
159+
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
160+
}
161+
162+
163+
class TestKeepDimReduce(Test1DReduce):
164+
def setUp(self):
165+
self.op_type = "reduce_sum"
166+
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
167+
self.attrs = {'dim': [1], 'keep_dim': True}
168+
self.outputs = {
169+
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
170+
keepdims=self.attrs['keep_dim'])
171+
}
172+
173+
174+
class TestReduceAll(Test1DReduce):
123175
def setUp(self):
124176
self.op_type = "reduce_sum"
125177
self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
126178
self.attrs = {'reduce_all': True}
127179
self.outputs = {'Out': self.inputs['X'].sum()}
128180

129-
def test_check_output(self):
130-
self.check_output()
131-
132-
def test_check_grad(self):
133-
self.check_grad(['X'], 'Out')
134-
135181

136182
## reduction in multi dims
137183
class TestReduceMeanOpMultiAxises(OpTest):

0 commit comments

Comments
 (0)