|
| 1 | +import numpy as np |
| 2 | +import paddle.v2 as paddle |
| 3 | +import paddle.v2.fluid as fluid |
| 4 | +import os |
| 5 | + |
| 6 | +x = fluid.layers.data(name='x', shape=[13], dtype='float32') |
| 7 | + |
| 8 | +y_predict = fluid.layers.fc(input=x, size=1, act=None) |
| 9 | + |
| 10 | +y = fluid.layers.data(name='y', shape=[1], dtype='float32') |
| 11 | + |
| 12 | +cost = fluid.layers.square_error_cost(input=y_predict, label=y) |
| 13 | +avg_cost = fluid.layers.mean(x=cost) |
| 14 | + |
| 15 | +sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) |
| 16 | +optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) |
| 17 | + |
| 18 | +BATCH_SIZE = 20 |
| 19 | + |
| 20 | +train_reader = paddle.batch( |
| 21 | + paddle.reader.shuffle( |
| 22 | + paddle.dataset.uci_housing.train(), buf_size=500), |
| 23 | + batch_size=BATCH_SIZE) |
| 24 | + |
| 25 | +place = fluid.CPUPlace() |
| 26 | +feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) |
| 27 | +exe = fluid.Executor(place) |
| 28 | + |
| 29 | +t = fluid.DistributeTranspiler() |
| 30 | +# all parameter server endpoints list for spliting parameters |
| 31 | +pserver_endpoints = os.getenv("PSERVERS") |
| 32 | +# server endpoint for current node |
| 33 | +current_endpoint = os.getenv("SERVER_ENDPOINT") |
| 34 | +# run as trainer or parameter server |
| 35 | +training_role = os.getenv("TRAINING_ROLE", |
| 36 | + "TRAINER") # get the training role: trainer/pserver |
| 37 | +t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2) |
| 38 | + |
| 39 | +if training_role == "PSERVER": |
| 40 | + if not current_endpoint: |
| 41 | + print("need env SERVER_ENDPOINT") |
| 42 | + exit(1) |
| 43 | + pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops) |
| 44 | + exe.run(fluid.default_startup_program()) |
| 45 | + exe.run(pserver_prog) |
| 46 | +else: |
| 47 | + trainer_prog = t.get_trainer_program() |
| 48 | + |
| 49 | + exe.run(fluid.default_startup_program()) |
| 50 | + |
| 51 | + PASS_NUM = 100 |
| 52 | + for pass_id in range(PASS_NUM): |
| 53 | + fluid.io.save_persistables(exe, "./fit_a_line.model/") |
| 54 | + fluid.io.load_persistables(exe, "./fit_a_line.model/") |
| 55 | + for data in train_reader(): |
| 56 | + avg_loss_value, = exe.run(trainer_prog, |
| 57 | + feed=feeder.feed(data), |
| 58 | + fetch_list=[avg_cost]) |
| 59 | + |
| 60 | + if avg_loss_value[0] < 10.0: |
| 61 | + exit(0) |
| 62 | +exit(1) |
0 commit comments