|
| 1 | +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. */ |
| 14 | + |
| 15 | +#include "MKLDNNBatchNormLayer.h" |
| 16 | + |
| 17 | +using namespace mkldnn; // NOLINT |
| 18 | +typedef memory::format format; |
| 19 | + |
| 20 | +namespace paddle { |
| 21 | + |
| 22 | +REGISTER_LAYER(mkldnn_batch_norm, MKLDNNBatchNormLayer); |
| 23 | + |
| 24 | +const real MKLDNNBatchNormLayer::EPS = 1E-5; |
| 25 | + |
| 26 | +bool MKLDNNBatchNormLayer::init(const LayerMap& layerMap, |
| 27 | + const ParameterMap& parameterMap) { |
| 28 | + if (!MKLDNNLayer::init(layerMap, parameterMap)) { |
| 29 | + return false; |
| 30 | + } |
| 31 | + |
| 32 | + // first one is input layer |
| 33 | + // the other two are created in config_parser.py saving moving mean and var |
| 34 | + CHECK_EQ(inputLayers_.size(), 3U); |
| 35 | + CHECK_EQ(inputLayers_.size(), parameters_.size()); |
| 36 | + CHECK_EQ(inputLayers_.size(), size_t(config_.inputs_size())); |
| 37 | + |
| 38 | + const ImageConfig& conf = config_.inputs(0).image_conf(); |
| 39 | + ic_ = conf.channels(); |
| 40 | + ih_ = inputLayers_[0]->getOutput().getFrameHeight(); |
| 41 | + iw_ = inputLayers_[0]->getOutput().getFrameWidth(); |
| 42 | + if (iw_ == 0 && ih_ == 0) { |
| 43 | + iw_ = conf.img_size(); |
| 44 | + ih_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size(); |
| 45 | + } |
| 46 | + oc_ = ic_; |
| 47 | + oh_ = ih_; |
| 48 | + ow_ = iw_; |
| 49 | + if (config_.has_use_global_stats()) { |
| 50 | + useGlobalStats_ = config_.use_global_stats(); |
| 51 | + } |
| 52 | + movingAvgFraction_ = config_.moving_average_fraction(); |
| 53 | + VLOG(MKLDNN_BASE) << "--- " << (useGlobalStats_ ? "use" : "do not use") |
| 54 | + << " --- global stats"; |
| 55 | + VLOG(MKLDNN_BASE) << "Moving average fraction: " << movingAvgFraction_; |
| 56 | + |
| 57 | + initWeight(); |
| 58 | + movingMean_.reset(new Weight(oc_, 1, parameters_[1], 0)); |
| 59 | + movingVar_.reset(new Weight(oc_, 1, parameters_[2], 0)); |
| 60 | + return true; |
| 61 | +} |
| 62 | + |
| 63 | +void MKLDNNBatchNormLayer::initWeight() { |
| 64 | + weight_.reset(new Weight(1, oc_, parameters_[0])); |
| 65 | + if (biasParameter_.get() != NULL) { |
| 66 | + biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_)); |
| 67 | + } |
| 68 | + CHECK_EQ(weight_ != nullptr, biases_ != nullptr) |
| 69 | + << "only support have both weight and bias, or neither"; |
| 70 | + if (weight_ && weight_->getW()) { |
| 71 | + CHECK(biases_ && biases_->getW()); |
| 72 | + valueScaleShift_ = Matrix::create(2, oc_, false, false); |
| 73 | + valueScaleShift_->zeroMem(); |
| 74 | + VectorPtr scale(new CpuVector(oc_, valueScaleShift_->getMemoryHandle(), 0)); |
| 75 | + VectorPtr shift( |
| 76 | + new CpuVector(oc_, valueScaleShift_->getMemoryHandle(), oc_)); |
| 77 | + const VectorPtr& wgt = parameters_[0]->getBuf(PARAMETER_VALUE); |
| 78 | + const VectorPtr& bias = biasParameter_->getBuf(PARAMETER_VALUE); |
| 79 | + scale->copyFrom(*wgt); |
| 80 | + shift->copyFrom(*bias); |
| 81 | + wgt->setData(valueScaleShift_->getData()); |
| 82 | + bias->setData(valueScaleShift_->getData() + oc_); |
| 83 | + } |
| 84 | + if (weight_ && weight_->getWGrad()) { |
| 85 | + CHECK(biases_ && biases_->getWGrad()); |
| 86 | + gradScaleShift_ = Matrix::create(2, oc_, false, false); |
| 87 | + gradScaleShift_->zeroMem(); |
| 88 | + const VectorPtr& wgt = parameters_[0]->getBuf(PARAMETER_GRADIENT); |
| 89 | + const VectorPtr& bias = biasParameter_->getBuf(PARAMETER_GRADIENT); |
| 90 | + wgt->setData(gradScaleShift_->getData()); |
| 91 | + bias->setData(gradScaleShift_->getData() + oc_); |
| 92 | + } |
| 93 | +} |
| 94 | + |
| 95 | +void MKLDNNBatchNormLayer::convertWeightsFromPaddle() { |
| 96 | + if (hasInitedWgt_) { |
| 97 | + return; |
| 98 | + } |
| 99 | + // prepare mean and var if necessary |
| 100 | + if (useGlobalStats_) { |
| 101 | + CHECK(mean_); |
| 102 | + CHECK(var_); |
| 103 | + mean_->copyFrom(*(movingMean_->getW())); |
| 104 | + var_->copyFrom(*(movingVar_->getW())); |
| 105 | + } |
| 106 | + hasInitedWgt_ = true; |
| 107 | +} |
| 108 | + |
| 109 | +void MKLDNNBatchNormLayer::calMovingMeanAndVar() { |
| 110 | + // calculating and saving moving mean and variance |
| 111 | + CHECK_EQ(useGlobalStats_, false); |
| 112 | + movingMean_->getW()->add( |
| 113 | + *mean_, movingAvgFraction_, 1.0 - movingAvgFraction_); |
| 114 | + // here var is v^2 |
| 115 | + movingVar_->getW()->add(*var_, movingAvgFraction_, 1.0 - movingAvgFraction_); |
| 116 | +} |
| 117 | + |
| 118 | +void MKLDNNBatchNormLayer::reshape( |
| 119 | + int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) { |
| 120 | + reshapeInput(bs, ih, iw); |
| 121 | + oh = ih; |
| 122 | + ow = ow; |
| 123 | + // ic_ and oc can not be changed |
| 124 | + CHECK_EQ(inputElemenCnt_ / bs / ih / iw, (size_t)ic) |
| 125 | + << "Input channel can not be changed"; |
| 126 | + reshapeOutput(oh, ow); |
| 127 | + resizeOutput(bs, oc * oh * ow); |
| 128 | + printSizeInfo(); |
| 129 | +} |
| 130 | + |
| 131 | +void MKLDNNBatchNormLayer::resetFwd(std::vector<primitive>& pipeline, |
| 132 | + MKLDNNMatrixPtr& in, |
| 133 | + MKLDNNMatrixPtr& wgt, |
| 134 | + MKLDNNMatrixPtr& bias, |
| 135 | + MKLDNNMatrixPtr& out) { |
| 136 | + // In training phase, it will always calculate mean and var, |
| 137 | + // so useGlobalStats must be false. |
| 138 | + // In scoring phase, it depends on useGlobalStats choice. |
| 139 | + if (passType_ != PASS_TEST && useGlobalStats_ == true) { |
| 140 | + LOG(WARNING) << "use_global_stats is invalid setting in training phase"; |
| 141 | + useGlobalStats_ = false; |
| 142 | + } |
| 143 | + |
| 144 | + resetFwdBuffers(in, wgt, out); |
| 145 | + |
| 146 | + resetFwdPD(fwdPD_, in, wgt, out); |
| 147 | + |
| 148 | + resetFwdPipeline(pipeline, fwdPD_, in, wgt, out); |
| 149 | +} |
| 150 | + |
| 151 | +void MKLDNNBatchNormLayer::resetBwd(std::vector<primitive>& pipeline, |
| 152 | + MKLDNNMatrixPtr& in, |
| 153 | + MKLDNNMatrixPtr& wgt, |
| 154 | + MKLDNNMatrixPtr& bias, |
| 155 | + MKLDNNMatrixPtr& out) { |
| 156 | + std::shared_ptr<bn_bwd::primitive_desc> pd; |
| 157 | + |
| 158 | + resetBwdBuffers(in, wgt, out); |
| 159 | + |
| 160 | + resetBwdPD(pd, in, wgt, out); |
| 161 | + |
| 162 | + resetBwdPipeline(pipeline, pd, in, wgt, out); |
| 163 | +} |
| 164 | + |
| 165 | +void MKLDNNBatchNormLayer::forward(PassType passType) { |
| 166 | + MKLDNNLayer::forward(passType); |
| 167 | + |
| 168 | + // calculate and save moving mean and variance |
| 169 | + if (passType_ != PASS_TEST) { |
| 170 | + calMovingMeanAndVar(); |
| 171 | + } |
| 172 | +} |
| 173 | + |
| 174 | +void MKLDNNBatchNormLayer::updateWeights(const UpdateCallback& callback) { |
| 175 | + weight_->getParameterPtr()->incUpdate(callback); |
| 176 | + if (biases_ && biases_->getWGrad()) { |
| 177 | + biases_->getParameterPtr()->incUpdate(callback); |
| 178 | + } |
| 179 | +} |
| 180 | + |
| 181 | +void MKLDNNBatchNormLayer::resetFwdBuffers(MKLDNNMatrixPtr& in, |
| 182 | + MKLDNNMatrixPtr& wgt, |
| 183 | + MKLDNNMatrixPtr& out) { |
| 184 | + resetInValue(in); |
| 185 | + |
| 186 | + memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; |
| 187 | + CHECK(in); |
| 188 | + auto outPD = |
| 189 | + MKLDNNMatrix::createPrimitiveDesc(outDims, in->getFormat(), engine_); |
| 190 | + resetOutValue(out, outPD); |
| 191 | + |
| 192 | + if (valueScaleShift_) { |
| 193 | + auto pd = MKLDNNMatrix::createPrimitiveDesc({2, oc_}, format::nc, engine_); |
| 194 | + resetWithMatrix(wgt, valueScaleShift_, pd); |
| 195 | + } |
| 196 | + if (passType_ != PASS_TEST || useGlobalStats_) { |
| 197 | + auto pd = MKLDNNMatrix::createPrimitiveDesc({oc_}, format::x, engine_); |
| 198 | + mean_ = MKLDNNMatrix::create(pd); |
| 199 | + var_ = MKLDNNMatrix::create(pd); |
| 200 | + } |
| 201 | +} |
| 202 | + |
| 203 | +void MKLDNNBatchNormLayer::resetFwdPD( |
| 204 | + std::shared_ptr<bn_fwd::primitive_desc>& pd, |
| 205 | + MKLDNNMatrixPtr in, |
| 206 | + MKLDNNMatrixPtr wgt, |
| 207 | + MKLDNNMatrixPtr out) { |
| 208 | + flags_ = 0u; |
| 209 | + prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring |
| 210 | + : prop_kind::forward_training; |
| 211 | + if (useGlobalStats_) { |
| 212 | + flags_ = (flags_ | batch_normalization_flag::use_global_stats); |
| 213 | + } |
| 214 | + if (wgt) { |
| 215 | + flags_ = (flags_ | batch_normalization_flag::use_scale_shift); |
| 216 | + } |
| 217 | + auto fwdDesc = bn_fwd::desc(pk, in->getMemoryDesc(), EPS, flags_); |
| 218 | + pd.reset(new bn_fwd::primitive_desc(fwdDesc, engine_)); |
| 219 | + // TODO(TJ): use check macro |
| 220 | + CHECK(out); |
| 221 | + CHECK(out->getPrimitiveDesc() == pd->dst_primitive_desc()); |
| 222 | + if (wgt) { |
| 223 | + CHECK(wgt->getPrimitiveDesc() == pd->weights_primitive_desc()); |
| 224 | + } |
| 225 | + if (passType_ != PASS_TEST || useGlobalStats_) { |
| 226 | + CHECK(mean_); |
| 227 | + CHECK(mean_->getPrimitiveDesc() == pd->mean_primitive_desc()); |
| 228 | + CHECK(var_); |
| 229 | + CHECK(var_->getPrimitiveDesc() == pd->variance_primitive_desc()); |
| 230 | + } |
| 231 | +} |
| 232 | + |
| 233 | +void MKLDNNBatchNormLayer::resetFwdPipeline( |
| 234 | + std::vector<primitive>& pipeline, |
| 235 | + std::shared_ptr<bn_fwd::primitive_desc>& pd, |
| 236 | + MKLDNNMatrixPtr& in, |
| 237 | + MKLDNNMatrixPtr& wgt, |
| 238 | + MKLDNNMatrixPtr& out) { |
| 239 | + if (passType_ == PASS_TEST) { |
| 240 | + if (useGlobalStats_) { |
| 241 | + fwd_.reset(wgt != nullptr ? new bn_fwd(*pd, |
| 242 | + *in, |
| 243 | + (const primitive::at)(*mean_), |
| 244 | + (const primitive::at)(*var_), |
| 245 | + *wgt, |
| 246 | + *out) |
| 247 | + : new bn_fwd(*pd, |
| 248 | + *in, |
| 249 | + (const primitive::at)(*mean_), |
| 250 | + (const primitive::at)(*var_), |
| 251 | + *out)); |
| 252 | + } else { |
| 253 | + fwd_.reset(wgt != nullptr ? new bn_fwd(*pd, *in, *wgt, *out) |
| 254 | + : new bn_fwd(*pd, *in, *out)); |
| 255 | + } |
| 256 | + } else { |
| 257 | + CHECK_EQ(useGlobalStats_, false) |
| 258 | + << "useGlobalStats should be false in training"; |
| 259 | + fwd_.reset(wgt != nullptr ? new bn_fwd(*pd, *in, *wgt, *out, *mean_, *var_) |
| 260 | + : new bn_fwd(*pd, *in, *out, *mean_, *var_)); |
| 261 | + } |
| 262 | + pipeline.push_back(*fwd_); |
| 263 | +} |
| 264 | + |
| 265 | +void MKLDNNBatchNormLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, |
| 266 | + MKLDNNMatrixPtr& wgt, |
| 267 | + MKLDNNMatrixPtr& out) { |
| 268 | + CHECK(inVal_ && outVal_); |
| 269 | + resetOutGrad(out, outVal_->getPrimitiveDesc()); |
| 270 | + resetInGrad(in, inVal_->getPrimitiveDesc()); |
| 271 | + if (gradScaleShift_) { |
| 272 | + CHECK(wgtVal_); |
| 273 | + resetWithMatrix(wgt, gradScaleShift_, wgtVal_->getPrimitiveDesc()); |
| 274 | + } |
| 275 | +} |
| 276 | + |
| 277 | +void MKLDNNBatchNormLayer::resetBwdPD( |
| 278 | + std::shared_ptr<bn_bwd::primitive_desc>& pd, |
| 279 | + MKLDNNMatrixPtr& in, |
| 280 | + MKLDNNMatrixPtr& wgt, |
| 281 | + MKLDNNMatrixPtr& out) { |
| 282 | + pd = nullptr; |
| 283 | + if (in == nullptr) { |
| 284 | + return; |
| 285 | + } |
| 286 | + CHECK(out); |
| 287 | + CHECK(out->getPrimitiveDesc() == in->getPrimitiveDesc()); |
| 288 | + auto md = in->getMemoryDesc(); |
| 289 | + auto bwdDesc = bn_bwd::desc(prop_kind::backward, md, md, EPS, flags_); |
| 290 | + pd.reset(new bn_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_)); |
| 291 | + // TODO(TJ): use check macro |
| 292 | + CHECK(wgt); |
| 293 | + CHECK(wgt->getPrimitiveDesc() == pd->diff_weights_primitive_desc()); |
| 294 | + CHECK(pd->weights_primitive_desc() == fwdPD_->weights_primitive_desc()); |
| 295 | + CHECK(mean_); |
| 296 | + CHECK(mean_->getPrimitiveDesc() == pd->mean_primitive_desc()); |
| 297 | + CHECK(var_); |
| 298 | + CHECK(var_->getPrimitiveDesc() == pd->variance_primitive_desc()); |
| 299 | +} |
| 300 | + |
| 301 | +void MKLDNNBatchNormLayer::resetBwdPipeline( |
| 302 | + std::vector<primitive>& pipeline, |
| 303 | + std::shared_ptr<bn_bwd::primitive_desc>& pd, |
| 304 | + MKLDNNMatrixPtr& in, |
| 305 | + MKLDNNMatrixPtr& wgt, |
| 306 | + MKLDNNMatrixPtr& out) { |
| 307 | + if (pd == nullptr) { |
| 308 | + return; |
| 309 | + } |
| 310 | + CHECK(inVal_); |
| 311 | + bwdData_.reset( |
| 312 | + wgt && wgtVal_ |
| 313 | + ? new bn_bwd(*pd, *inVal_, *mean_, *var_, *out, *wgtVal_, *in, *wgt) |
| 314 | + : new bn_bwd(*pd, *inVal_, *mean_, *var_, *out, *in)); |
| 315 | + pipeline.push_back(*bwdData_); |
| 316 | +} |
| 317 | + |
| 318 | +} // namespace paddle |
0 commit comments