Skip to content

Commit c58af84

Browse files
authored
Merge pull request #12426 from panyx0718/better_dist_test
Add transformer dist test and factor out some common utils.
2 parents 7a495a5 + 12ea358 commit c58af84

File tree

7 files changed

+453
-120
lines changed

7 files changed

+453
-120
lines changed

python/paddle/fluid/tests/unittests/CMakeLists.txt

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -49,6 +49,7 @@ list(REMOVE_ITEM TEST_OPS test_dist_train)
4949
list(REMOVE_ITEM TEST_OPS test_parallel_executor_crf)
5050
list(REMOVE_ITEM TEST_OPS test_parallel_executor_fetch_feed)
5151
list(REMOVE_ITEM TEST_OPS test_dist_se_resnext)
52+
list(REMOVE_ITEM TEST_OPS test_dist_transformer)
5253
foreach(TEST_OP ${TEST_OPS})
5354
py_test_modules(${TEST_OP} MODULES ${TEST_OP})
5455
endforeach(TEST_OP)
@@ -61,4 +62,5 @@ if(WITH_DISTRIBUTE)
6162
endif()
6263
py_test_modules(test_parallel_executor_crf MODULES test_parallel_executor_crf SERIAL)
6364
py_test_modules(test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL)
65+
py_test_modules(test_dist_transformer MODULES test_dist_transformer SERIAL)
6466
py_test_modules(test_dist_se_resnext MODULES test_dist_se_resnext SERIAL)
Lines changed: 280 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,280 @@
1+
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
import numpy as np
16+
import argparse
17+
import time
18+
import math
19+
20+
import paddle
21+
import paddle.fluid as fluid
22+
from paddle.fluid import core
23+
import os
24+
import sys
25+
import transformer_model
26+
import paddle.dataset.wmt16 as wmt16
27+
28+
# Fix seed for test
29+
fluid.default_startup_program().random_seed = 1
30+
fluid.default_main_program().random_seed = 1
31+
32+
WMT16_RECORDIO_FILE = "/tmp/wmt16.recordio"
33+
34+
35+
class ModelHyperParams(object):
36+
# Dictionary size for source and target language. This model directly uses
37+
# paddle.dataset.wmt16 in which <bos>, <eos> and <unk> token has
38+
# alreay been added, but the <pad> token is not added. Transformer requires
39+
# sequences in a mini-batch are padded to have the same length. A <pad> token is
40+
# added into the original dictionary in paddle.dateset.wmt16.
41+
42+
# size of source word dictionary.
43+
src_vocab_size = 10000
44+
# index for <pad> token in source language.
45+
src_pad_idx = src_vocab_size
46+
47+
# size of target word dictionay
48+
trg_vocab_size = 10000
49+
# index for <pad> token in target language.
50+
trg_pad_idx = trg_vocab_size
51+
52+
# position value corresponding to the <pad> token.
53+
pos_pad_idx = 0
54+
55+
# max length of sequences. It should plus 1 to include position
56+
# padding token for position encoding.
57+
max_length = 50
58+
59+
# the dimension for word embeddings, which is also the last dimension of
60+
# the input and output of multi-head attention, position-wise feed-forward
61+
# networks, encoder and decoder.
62+
63+
d_model = 512
64+
# size of the hidden layer in position-wise feed-forward networks.
65+
d_inner_hid = 1024
66+
# the dimension that keys are projected to for dot-product attention.
67+
d_key = 64
68+
# the dimension that values are projected to for dot-product attention.
69+
d_value = 64
70+
# number of head used in multi-head attention.
71+
n_head = 8
72+
# number of sub-layers to be stacked in the encoder and decoder.
73+
n_layer = 6
74+
# dropout rate used by all dropout layers.
75+
dropout = 0.1
76+
77+
78+
def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head):
79+
"""
80+
Pad the instances to the max sequence length in batch, and generate the
81+
corresponding position data and attention bias. Then, convert the numpy
82+
data to tensors and return a dict mapping names to tensors.
83+
"""
84+
85+
def __pad_batch_data(insts,
86+
pad_idx,
87+
is_target=False,
88+
return_pos=True,
89+
return_attn_bias=True,
90+
return_max_len=True):
91+
"""
92+
Pad the instances to the max sequence length in batch, and generate the
93+
corresponding position data and attention bias.
94+
"""
95+
return_list = []
96+
max_len = max(len(inst) for inst in insts)
97+
inst_data = np.array(
98+
[inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
99+
return_list += [inst_data.astype("int64").reshape([-1, 1])]
100+
if return_pos:
101+
inst_pos = np.array([[
102+
pos_i + 1 if w_i != pad_idx else 0
103+
for pos_i, w_i in enumerate(inst)
104+
] for inst in inst_data])
105+
106+
return_list += [inst_pos.astype("int64").reshape([-1, 1])]
107+
if return_attn_bias:
108+
if is_target:
109+
# This is used to avoid attention on paddings and subsequent
110+
# words.
111+
slf_attn_bias_data = np.ones((inst_data.shape[0], max_len,
112+
max_len))
113+
slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape(
114+
[-1, 1, max_len, max_len])
115+
slf_attn_bias_data = np.tile(slf_attn_bias_data,
116+
[1, n_head, 1, 1]) * [-1e9]
117+
else:
118+
# This is used to avoid attention on paddings.
119+
slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
120+
(max_len - len(inst))
121+
for inst in insts])
122+
slf_attn_bias_data = np.tile(
123+
slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
124+
[1, n_head, max_len, 1])
125+
return_list += [slf_attn_bias_data.astype("float32")]
126+
if return_max_len:
127+
return_list += [max_len]
128+
return return_list if len(return_list) > 1 else return_list[0]
129+
130+
src_word, src_pos, src_slf_attn_bias, src_max_len = __pad_batch_data(
131+
[inst[0] for inst in insts], src_pad_idx, is_target=False)
132+
trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = __pad_batch_data(
133+
[inst[1] for inst in insts], trg_pad_idx, is_target=True)
134+
trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
135+
[1, 1, trg_max_len, 1]).astype("float32")
136+
lbl_word = __pad_batch_data([inst[2] for inst in insts], trg_pad_idx, False,
137+
False, False, False)
138+
lbl_weight = (lbl_word != trg_pad_idx).astype("float32").reshape([-1, 1])
139+
140+
return [
141+
src_word, src_pos, trg_word, trg_pos, src_slf_attn_bias,
142+
trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
143+
]
144+
145+
146+
def transformer(use_feed):
147+
assert not use_feed, "transfomer doesn't support feed yet"
148+
return transformer_model.transformer(
149+
ModelHyperParams.src_vocab_size + 1,
150+
ModelHyperParams.trg_vocab_size + 1, ModelHyperParams.max_length + 1,
151+
ModelHyperParams.n_layer, ModelHyperParams.n_head,
152+
ModelHyperParams.d_key, ModelHyperParams.d_value,
153+
ModelHyperParams.d_model, ModelHyperParams.d_inner_hid,
154+
ModelHyperParams.dropout, ModelHyperParams.src_pad_idx,
155+
ModelHyperParams.trg_pad_idx, ModelHyperParams.pos_pad_idx)
156+
157+
158+
def get_model():
159+
avg_cost = transformer(use_feed=False)
160+
optimizer = fluid.optimizer.Adam()
161+
optimizer.minimize(avg_cost)
162+
return avg_cost
163+
164+
165+
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
166+
t = fluid.DistributeTranspiler()
167+
t.transpile(
168+
trainer_id=trainer_id,
169+
program=main_program,
170+
pservers=pserver_endpoints,
171+
trainers=trainers)
172+
return t
173+
174+
175+
class DistTransformer2x2(object):
176+
def run_pserver(self, pserver_endpoints, trainers, current_endpoint,
177+
trainer_id):
178+
get_model()
179+
t = get_transpiler(trainer_id,
180+
fluid.default_main_program(), pserver_endpoints,
181+
trainers)
182+
pserver_prog = t.get_pserver_program(current_endpoint)
183+
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
184+
185+
place = fluid.CPUPlace()
186+
exe = fluid.Executor(place)
187+
exe.run(startup_prog)
188+
exe.run(pserver_prog)
189+
190+
def _wait_ps_ready(self, pid):
191+
retry_times = 20
192+
while True:
193+
assert retry_times >= 0, "wait ps ready failed"
194+
time.sleep(3)
195+
print("waiting ps ready: ", pid)
196+
try:
197+
# the listen_and_serv_op would touch a file which contains the listen port
198+
# on the /tmp directory until it was ready to process all the RPC call.
199+
os.stat("/tmp/paddle.%d.port" % pid)
200+
return
201+
except os.error:
202+
retry_times -= 1
203+
204+
def run_trainer(self, place, endpoints, trainer_id, trainers, is_dist=True):
205+
avg_cost = get_model()
206+
if is_dist:
207+
t = get_transpiler(trainer_id,
208+
fluid.default_main_program(), endpoints,
209+
trainers)
210+
trainer_prog = t.get_trainer_program()
211+
else:
212+
trainer_prog = fluid.default_main_program()
213+
214+
startup_exe = fluid.Executor(place)
215+
startup_exe.run(fluid.default_startup_program())
216+
217+
strategy = fluid.ExecutionStrategy()
218+
strategy.num_threads = 1
219+
strategy.allow_op_delay = False
220+
exe = fluid.ParallelExecutor(
221+
True, loss_name=avg_cost.name, exec_strategy=strategy)
222+
223+
first_loss, = exe.run(fetch_list=[avg_cost.name])
224+
print(first_loss)
225+
for i in xrange(5):
226+
_ = exe.run(fetch_list=[avg_cost.name])
227+
last_loss, = exe.run(fetch_list=[avg_cost.name])
228+
print(last_loss)
229+
230+
231+
def main(role="pserver",
232+
endpoints="127.0.0.1:9123",
233+
trainer_id=0,
234+
current_endpoint="127.0.0.1:9123",
235+
trainers=1,
236+
is_dist=True):
237+
238+
reader = paddle.batch(
239+
wmt16.train(ModelHyperParams.src_vocab_size,
240+
ModelHyperParams.trg_vocab_size),
241+
batch_size=transformer_model.batch_size)
242+
243+
with fluid.recordio_writer.create_recordio_writer(
244+
WMT16_RECORDIO_FILE) as writer:
245+
for batch in reader():
246+
for tensor in prepare_batch_input(
247+
batch, ModelHyperParams.src_pad_idx,
248+
ModelHyperParams.trg_pad_idx, ModelHyperParams.n_head):
249+
t = fluid.LoDTensor()
250+
t.set(tensor, fluid.CPUPlace())
251+
writer.append_tensor(t)
252+
writer.complete_append_tensor()
253+
254+
model = DistTransformer2x2()
255+
if role == "pserver":
256+
model.run_pserver(endpoints, trainers, current_endpoint, trainer_id)
257+
else:
258+
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
259+
) else fluid.CPUPlace()
260+
model.run_trainer(p, endpoints, trainer_id, trainers, is_dist)
261+
262+
263+
if __name__ == "__main__":
264+
if len(sys.argv) != 7:
265+
print(
266+
"Usage: python dist_transformer.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
267+
)
268+
role = sys.argv[1]
269+
endpoints = sys.argv[2]
270+
trainer_id = int(sys.argv[3])
271+
current_endpoint = sys.argv[4]
272+
trainers = int(sys.argv[5])
273+
is_dist = True if sys.argv[6] == "TRUE" else False
274+
main(
275+
role=role,
276+
endpoints=endpoints,
277+
trainer_id=trainer_id,
278+
current_endpoint=current_endpoint,
279+
trainers=trainers,
280+
is_dist=is_dist)

0 commit comments

Comments
 (0)