|
| 1 | +#!/usr/bin/env python |
| 2 | +from paddle.trainer_config_helpers import * |
| 3 | + |
| 4 | +height = 224 |
| 5 | +width = 224 |
| 6 | +num_class = 1000 |
| 7 | +batch_size = get_config_arg('batch_size', int, 64) |
| 8 | +layer_num = get_config_arg("layer_num", int, 50) |
| 9 | +is_test = get_config_arg("is_test", bool, False) |
| 10 | + |
| 11 | +args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} |
| 12 | +define_py_data_sources2( |
| 13 | + "train.list", None, module="provider", obj="process", args=args) |
| 14 | + |
| 15 | +settings( |
| 16 | + batch_size=batch_size, |
| 17 | + learning_rate=0.01 / batch_size, |
| 18 | + learning_method=MomentumOptimizer(0.9), |
| 19 | + regularization=L2Regularization(0.0005 * batch_size)) |
| 20 | + |
| 21 | + |
| 22 | +#######################Network Configuration ############# |
| 23 | +def conv_bn_layer(name, |
| 24 | + input, |
| 25 | + filter_size, |
| 26 | + num_filters, |
| 27 | + stride, |
| 28 | + padding, |
| 29 | + channels=None, |
| 30 | + active_type=ReluActivation()): |
| 31 | + """ |
| 32 | + A wrapper for conv layer with batch normalization layers. |
| 33 | + Note: |
| 34 | + conv layer has no activation. |
| 35 | + """ |
| 36 | + |
| 37 | + tmp = img_conv_layer( |
| 38 | + name=name + "_conv", |
| 39 | + input=input, |
| 40 | + filter_size=filter_size, |
| 41 | + num_channels=channels, |
| 42 | + num_filters=num_filters, |
| 43 | + stride=stride, |
| 44 | + padding=padding, |
| 45 | + act=LinearActivation(), |
| 46 | + bias_attr=False) |
| 47 | + return batch_norm_layer( |
| 48 | + name=name + "_bn", input=tmp, act=active_type, use_global_stats=is_test) |
| 49 | + |
| 50 | + |
| 51 | +def bottleneck_block(name, input, num_filters1, num_filters2): |
| 52 | + """ |
| 53 | + A wrapper for bottlenect building block in ResNet. |
| 54 | + Last conv_bn_layer has no activation. |
| 55 | + Addto layer has activation of relu. |
| 56 | + """ |
| 57 | + last_name = conv_bn_layer( |
| 58 | + name=name + '_branch2a', |
| 59 | + input=input, |
| 60 | + filter_size=1, |
| 61 | + num_filters=num_filters1, |
| 62 | + stride=1, |
| 63 | + padding=0) |
| 64 | + last_name = conv_bn_layer( |
| 65 | + name=name + '_branch2b', |
| 66 | + input=last_name, |
| 67 | + filter_size=3, |
| 68 | + num_filters=num_filters1, |
| 69 | + stride=1, |
| 70 | + padding=1) |
| 71 | + last_name = conv_bn_layer( |
| 72 | + name=name + '_branch2c', |
| 73 | + input=last_name, |
| 74 | + filter_size=1, |
| 75 | + num_filters=num_filters2, |
| 76 | + stride=1, |
| 77 | + padding=0, |
| 78 | + active_type=LinearActivation()) |
| 79 | + |
| 80 | + return addto_layer( |
| 81 | + name=name + "_addto", input=[input, last_name], act=ReluActivation()) |
| 82 | + |
| 83 | + |
| 84 | +def mid_projection(name, input, num_filters1, num_filters2, stride=2): |
| 85 | + """ |
| 86 | + A wrapper for middile projection in ResNet. |
| 87 | + projection shortcuts are used for increasing dimensions, |
| 88 | + and other shortcuts are identity |
| 89 | + branch1: projection shortcuts are used for increasing |
| 90 | + dimensions, has no activation. |
| 91 | + branch2x: bottleneck building block, shortcuts are identity. |
| 92 | + """ |
| 93 | + # stride = 2 |
| 94 | + branch1 = conv_bn_layer( |
| 95 | + name=name + '_branch1', |
| 96 | + input=input, |
| 97 | + filter_size=1, |
| 98 | + num_filters=num_filters2, |
| 99 | + stride=stride, |
| 100 | + padding=0, |
| 101 | + active_type=LinearActivation()) |
| 102 | + |
| 103 | + last_name = conv_bn_layer( |
| 104 | + name=name + '_branch2a', |
| 105 | + input=input, |
| 106 | + filter_size=1, |
| 107 | + num_filters=num_filters1, |
| 108 | + stride=stride, |
| 109 | + padding=0) |
| 110 | + last_name = conv_bn_layer( |
| 111 | + name=name + '_branch2b', |
| 112 | + input=last_name, |
| 113 | + filter_size=3, |
| 114 | + num_filters=num_filters1, |
| 115 | + stride=1, |
| 116 | + padding=1) |
| 117 | + |
| 118 | + last_name = conv_bn_layer( |
| 119 | + name=name + '_branch2c', |
| 120 | + input=last_name, |
| 121 | + filter_size=1, |
| 122 | + num_filters=num_filters2, |
| 123 | + stride=1, |
| 124 | + padding=0, |
| 125 | + active_type=LinearActivation()) |
| 126 | + |
| 127 | + return addto_layer( |
| 128 | + name=name + "_addto", input=[branch1, last_name], act=ReluActivation()) |
| 129 | + |
| 130 | + |
| 131 | +img = data_layer(name='image', size=height * width * 3) |
| 132 | + |
| 133 | + |
| 134 | +def deep_res_net(res2_num=3, res3_num=4, res4_num=6, res5_num=3): |
| 135 | + """ |
| 136 | + A wrapper for 50,101,152 layers of ResNet. |
| 137 | + res2_num: number of blocks stacked in conv2_x |
| 138 | + res3_num: number of blocks stacked in conv3_x |
| 139 | + res4_num: number of blocks stacked in conv4_x |
| 140 | + res5_num: number of blocks stacked in conv5_x |
| 141 | + """ |
| 142 | + # For ImageNet |
| 143 | + # conv1: 112x112 |
| 144 | + tmp = conv_bn_layer( |
| 145 | + "conv1", |
| 146 | + input=img, |
| 147 | + filter_size=7, |
| 148 | + channels=3, |
| 149 | + num_filters=64, |
| 150 | + stride=2, |
| 151 | + padding=3) |
| 152 | + tmp = img_pool_layer(name="pool1", input=tmp, pool_size=3, stride=2) |
| 153 | + |
| 154 | + # conv2_x: 56x56 |
| 155 | + tmp = mid_projection( |
| 156 | + name="res2_1", input=tmp, num_filters1=64, num_filters2=256, stride=1) |
| 157 | + for i in xrange(2, res2_num + 1, 1): |
| 158 | + tmp = bottleneck_block( |
| 159 | + name="res2_" + str(i), input=tmp, num_filters1=64, num_filters2=256) |
| 160 | + |
| 161 | + # conv3_x: 28x28 |
| 162 | + tmp = mid_projection( |
| 163 | + name="res3_1", input=tmp, num_filters1=128, num_filters2=512) |
| 164 | + for i in xrange(2, res3_num + 1, 1): |
| 165 | + tmp = bottleneck_block( |
| 166 | + name="res3_" + str(i), |
| 167 | + input=tmp, |
| 168 | + num_filters1=128, |
| 169 | + num_filters2=512) |
| 170 | + |
| 171 | + # conv4_x: 14x14 |
| 172 | + tmp = mid_projection( |
| 173 | + name="res4_1", input=tmp, num_filters1=256, num_filters2=1024) |
| 174 | + for i in xrange(2, res4_num + 1, 1): |
| 175 | + tmp = bottleneck_block( |
| 176 | + name="res4_" + str(i), |
| 177 | + input=tmp, |
| 178 | + num_filters1=256, |
| 179 | + num_filters2=1024) |
| 180 | + |
| 181 | + # conv5_x: 7x7 |
| 182 | + tmp = mid_projection( |
| 183 | + name="res5_1", input=tmp, num_filters1=512, num_filters2=2048) |
| 184 | + for i in xrange(2, res5_num + 1, 1): |
| 185 | + tmp = bottleneck_block( |
| 186 | + name="res5_" + str(i), |
| 187 | + input=tmp, |
| 188 | + num_filters1=512, |
| 189 | + num_filters2=2048) |
| 190 | + |
| 191 | + tmp = img_pool_layer( |
| 192 | + name='avgpool', |
| 193 | + input=tmp, |
| 194 | + pool_size=7, |
| 195 | + stride=1, |
| 196 | + pool_type=AvgPooling()) |
| 197 | + |
| 198 | + return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation()) |
| 199 | + |
| 200 | + |
| 201 | +if layer_num == 50: |
| 202 | + resnet = deep_res_net(3, 4, 6, 3) |
| 203 | +elif layer_num == 101: |
| 204 | + resnet = deep_res_net(3, 4, 23, 3) |
| 205 | +elif layer_num == 152: |
| 206 | + resnet = deep_res_net(3, 8, 36, 3) |
| 207 | +else: |
| 208 | + print("Wrong layer number.") |
| 209 | + |
| 210 | +lbl = data_layer(name="label", size=num_class) |
| 211 | +loss = cross_entropy(name='loss', input=resnet, label=lbl) |
| 212 | +inputs(img, lbl) |
| 213 | +outputs(loss) |
0 commit comments