Skip to content

Commit d4c2f2f

Browse files
author
ranqiu
committed
Refine the doc of layers.py
1 parent e4c8de9 commit d4c2f2f

File tree

1 file changed

+24
-24
lines changed
  • python/paddle/trainer_config_helpers

1 file changed

+24
-24
lines changed

python/paddle/trainer_config_helpers/layers.py

Lines changed: 24 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -2985,8 +2985,8 @@ def spp_layer(input,
29852985
A layer performs spatial pyramid pooling.
29862986
29872987
Reference:
2988-
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
2989-
https://arxiv.org/abs/1406.4729
2988+
`Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
2989+
https://arxiv.org/abs/1406.4729`_
29902990
29912991
The example usage is:
29922992
@@ -3087,8 +3087,8 @@ def img_cmrnorm_layer(input,
30873087
Response normalization across feature maps.
30883088
30893089
Reference:
3090-
ImageNet Classification with Deep Convolutional Neural Networks
3091-
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
3090+
`ImageNet Classification with Deep Convolutional Neural Networks
3091+
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf`_
30923092
30933093
The example usage is:
30943094
@@ -3154,9 +3154,9 @@ def batch_norm_layer(input,
31543154
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
31553155
31563156
Reference:
3157-
Batch Normalization: Accelerating Deep Network Training by Reducing
3157+
`Batch Normalization: Accelerating Deep Network Training by Reducing
31583158
Internal Covariate Shift
3159-
http://arxiv.org/abs/1502.03167
3159+
http://arxiv.org/abs/1502.03167`_
31603160
31613161
The example usage is:
31623162
@@ -5413,10 +5413,10 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
54135413
to be devided by groups.
54145414
54155415
Reference:
5416-
Maxout Networks
5417-
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
5418-
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
5419-
https://arxiv.org/pdf/1312.6082v4.pdf
5416+
`Maxout Networks
5417+
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf`_
5418+
`Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
5419+
https://arxiv.org/pdf/1312.6082v4.pdf`_
54205420
54215421
.. math::
54225422
y_{si+j} = \max_k x_{gsi + sk + j}
@@ -5481,9 +5481,9 @@ def ctc_layer(input,
54815481
alignment between the inputs and the target labels is unknown.
54825482
54835483
Reference:
5484-
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
5484+
`Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
54855485
with Recurrent Neural Networks
5486-
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5486+
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
54875487
54885488
Note:
54895489
Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
@@ -5555,9 +5555,9 @@ def warp_ctc_layer(input,
55555555
install it to :code:`third_party/install/warpctc` directory.
55565556
55575557
Reference:
5558-
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
5558+
`Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
55595559
with Recurrent Neural Networks
5560-
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5560+
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
55615561
55625562
Note:
55635563
- Let num_classes represents the category number. Considering the 'blank'
@@ -5777,8 +5777,8 @@ def nce_layer(input,
57775777
Noise-contrastive estimation.
57785778
57795779
Reference:
5780-
A fast and simple algorithm for training neural probabilistic language
5781-
models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
5780+
`A fast and simple algorithm for training neural probabilistic language
5781+
models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf`_
57825782
57835783
The example usage is:
57845784
@@ -5893,8 +5893,8 @@ def rank_cost(left,
58935893
A cost Layer for learning to rank using gradient descent.
58945894
58955895
Reference:
5896-
Learning to Rank using Gradient Descent
5897-
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
5896+
`Learning to Rank using Gradient Descent
5897+
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf`_
58985898
58995899
.. math::
59005900
@@ -6429,8 +6429,8 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
64296429
smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if} \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
64306430
64316431
Reference:
6432-
Fast R-CNN
6433-
https://arxiv.org/pdf/1504.08083v2.pdf
6432+
`Fast R-CNN
6433+
https://arxiv.org/pdf/1504.08083v2.pdf`_
64346434
64356435
The example usage is:
64366436
@@ -6636,8 +6636,8 @@ def prelu_layer(input,
66366636
The Parametric Relu activation that actives outputs with a learnable weight.
66376637
66386638
Reference:
6639-
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
6640-
ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf
6639+
`Delving Deep into Rectifiers: Surpassing Human-Level Performance on
6640+
ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf`_
66416641
66426642
.. math::
66436643
z_i &\\quad if \\quad z_i > 0 \\\\
@@ -6733,8 +6733,8 @@ def gated_unit_layer(input,
67336733
product between :match:`X'` and :math:`\sigma` is finally returned.
67346734
67356735
Reference:
6736-
Language Modeling with Gated Convolutional Networks
6737-
https://arxiv.org/abs/1612.08083
6736+
`Language Modeling with Gated Convolutional Networks
6737+
https://arxiv.org/abs/1612.08083`_
67386738
67396739
.. math::
67406740
y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

0 commit comments

Comments
 (0)