@@ -2985,8 +2985,8 @@ def spp_layer(input,
2985
2985
A layer performs spatial pyramid pooling.
2986
2986
2987
2987
Reference:
2988
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
2989
- https://arxiv.org/abs/1406.4729
2988
+ ` Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
2989
+ https://arxiv.org/abs/1406.4729`_
2990
2990
2991
2991
The example usage is:
2992
2992
@@ -3087,8 +3087,8 @@ def img_cmrnorm_layer(input,
3087
3087
Response normalization across feature maps.
3088
3088
3089
3089
Reference:
3090
- ImageNet Classification with Deep Convolutional Neural Networks
3091
- http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
3090
+ ` ImageNet Classification with Deep Convolutional Neural Networks
3091
+ http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf`_
3092
3092
3093
3093
The example usage is:
3094
3094
@@ -3154,9 +3154,9 @@ def batch_norm_layer(input,
3154
3154
y_i &\\ gets \\ gamma \\ hat{x_i} + \\ beta \\ qquad &//\ scale\ and\ shift
3155
3155
3156
3156
Reference:
3157
- Batch Normalization: Accelerating Deep Network Training by Reducing
3157
+ ` Batch Normalization: Accelerating Deep Network Training by Reducing
3158
3158
Internal Covariate Shift
3159
- http://arxiv.org/abs/1502.03167
3159
+ http://arxiv.org/abs/1502.03167`_
3160
3160
3161
3161
The example usage is:
3162
3162
@@ -5413,10 +5413,10 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5413
5413
to be devided by groups.
5414
5414
5415
5415
Reference:
5416
- Maxout Networks
5417
- http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
5418
- Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
5419
- https://arxiv.org/pdf/1312.6082v4.pdf
5416
+ ` Maxout Networks
5417
+ http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf`_
5418
+ ` Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
5419
+ https://arxiv.org/pdf/1312.6082v4.pdf`_
5420
5420
5421
5421
.. math::
5422
5422
y_{si+j} = \max_k x_{gsi + sk + j}
@@ -5481,9 +5481,9 @@ def ctc_layer(input,
5481
5481
alignment between the inputs and the target labels is unknown.
5482
5482
5483
5483
Reference:
5484
- Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
5484
+ ` Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
5485
5485
with Recurrent Neural Networks
5486
- http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5486
+ http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
5487
5487
5488
5488
Note:
5489
5489
Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
@@ -5555,9 +5555,9 @@ def warp_ctc_layer(input,
5555
5555
install it to :code:`third_party/install/warpctc` directory.
5556
5556
5557
5557
Reference:
5558
- Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
5558
+ ` Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
5559
5559
with Recurrent Neural Networks
5560
- http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5560
+ http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
5561
5561
5562
5562
Note:
5563
5563
- Let num_classes represents the category number. Considering the 'blank'
@@ -5777,8 +5777,8 @@ def nce_layer(input,
5777
5777
Noise-contrastive estimation.
5778
5778
5779
5779
Reference:
5780
- A fast and simple algorithm for training neural probabilistic language
5781
- models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
5780
+ ` A fast and simple algorithm for training neural probabilistic language
5781
+ models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf`_
5782
5782
5783
5783
The example usage is:
5784
5784
@@ -5893,8 +5893,8 @@ def rank_cost(left,
5893
5893
A cost Layer for learning to rank using gradient descent.
5894
5894
5895
5895
Reference:
5896
- Learning to Rank using Gradient Descent
5897
- http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
5896
+ ` Learning to Rank using Gradient Descent
5897
+ http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf`_
5898
5898
5899
5899
.. math::
5900
5900
@@ -6429,8 +6429,8 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
6429
6429
smooth_{L1}(x) = \\ begin{cases} 0.5x^2& \\ text{if} \\ |x| < 1 \\ \\ |x|-0.5& \\ text{otherwise} \end{cases}
6430
6430
6431
6431
Reference:
6432
- Fast R-CNN
6433
- https://arxiv.org/pdf/1504.08083v2.pdf
6432
+ ` Fast R-CNN
6433
+ https://arxiv.org/pdf/1504.08083v2.pdf`_
6434
6434
6435
6435
The example usage is:
6436
6436
@@ -6636,8 +6636,8 @@ def prelu_layer(input,
6636
6636
The Parametric Relu activation that actives outputs with a learnable weight.
6637
6637
6638
6638
Reference:
6639
- Delving Deep into Rectifiers: Surpassing Human-Level Performance on
6640
- ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf
6639
+ ` Delving Deep into Rectifiers: Surpassing Human-Level Performance on
6640
+ ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf`_
6641
6641
6642
6642
.. math::
6643
6643
z_i &\\ quad if \\ quad z_i > 0 \\ \\
@@ -6733,8 +6733,8 @@ def gated_unit_layer(input,
6733
6733
product between :match:`X'` and :math:`\sigma` is finally returned.
6734
6734
6735
6735
Reference:
6736
- Language Modeling with Gated Convolutional Networks
6737
- https://arxiv.org/abs/1612.08083
6736
+ ` Language Modeling with Gated Convolutional Networks
6737
+ https://arxiv.org/abs/1612.08083`_
6738
6738
6739
6739
.. math::
6740
6740
y=\\ text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)
0 commit comments