File tree Expand file tree Collapse file tree 2 files changed +4
-6
lines changed
python/paddle/trainer_config_helpers Expand file tree Collapse file tree 2 files changed +4
-6
lines changed Original file line number Diff line number Diff line change @@ -36,8 +36,7 @@ namespace paddle {
36
36
*
37
37
* The detailed calculation for forward and backward can be found at this paper:
38
38
*
39
- * Rendle, Steffen. Factorization machines. IEEE 10th International
40
- * Conference on Data Mining (ICDM). IEEE, 2010.
39
+ * Factorization machines.
41
40
*
42
41
* The config file api is factorization_machine.
43
42
*/
@@ -59,7 +58,7 @@ class FactorizationMachineLayer : public Layer {
59
58
// The result of input matrix * latent vector matrix that will be used in
60
59
// both forward and backward step
61
60
MatrixPtr inputMulFactor_;
62
- // Temporary calculation result store
61
+ // Store temporary calculation result
63
62
MatrixPtr tmpOut_;
64
63
MatrixPtr tmpSum_;
65
64
// Negative identity matrix
Original file line number Diff line number Diff line change @@ -3876,7 +3876,7 @@ def recurrent_layer(input,
3876
3876
:type input: LayerOutput
3877
3877
:param act: Activation type. TanhActivation is the default activation.
3878
3878
:type act: BaseActivation
3879
- :param bias_attr: The parameter attribute for bias. If this parameter is set to
3879
+ :param bias_attr: The parameter attribute for bias. If this parameter is set to
3880
3880
False or an object whose type is not ParameterAttribute,
3881
3881
no bias is defined. If the parameter is set to True,
3882
3882
the bias is initialized to zero.
@@ -7307,8 +7307,7 @@ def factorization_machine(input,
7307
7307
each latent vector is k.
7308
7308
7309
7309
For details of Factorization Machine, please refer to the paper:
7310
- Rendle, Steffen. Factorization machines. IEEE 10th International
7311
- Conference on Data Mining (ICDM). IEEE, 2010.
7310
+ Factorization machines.
7312
7311
7313
7312
.. code-block:: python
7314
7313
factor_machine = factorization_machine(input=input_layer, factor_size=10)
You can’t perform that action at this time.
0 commit comments