Skip to content

Commit d5a6c81

Browse files
committed
Update docs for factorization machine layer
1 parent 6a0cfd9 commit d5a6c81

File tree

2 files changed

+4
-6
lines changed

2 files changed

+4
-6
lines changed

paddle/gserver/layers/FactorizationMachineLayer.h

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -36,8 +36,7 @@ namespace paddle {
3636
*
3737
* The detailed calculation for forward and backward can be found at this paper:
3838
*
39-
* Rendle, Steffen. Factorization machines. IEEE 10th International
40-
* Conference on Data Mining (ICDM). IEEE, 2010.
39+
* Factorization machines.
4140
*
4241
* The config file api is factorization_machine.
4342
*/
@@ -59,7 +58,7 @@ class FactorizationMachineLayer : public Layer {
5958
// The result of input matrix * latent vector matrix that will be used in
6059
// both forward and backward step
6160
MatrixPtr inputMulFactor_;
62-
// Temporary calculation result store
61+
// Store temporary calculation result
6362
MatrixPtr tmpOut_;
6463
MatrixPtr tmpSum_;
6564
// Negative identity matrix

python/paddle/trainer_config_helpers/layers.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -3876,7 +3876,7 @@ def recurrent_layer(input,
38763876
:type input: LayerOutput
38773877
:param act: Activation type. TanhActivation is the default activation.
38783878
:type act: BaseActivation
3879-
:param bias_attr: The parameter attribute for bias. If this parameter is set to
3879+
:param bias_attr: The parameter attribute for bias. If this parameter is set to
38803880
False or an object whose type is not ParameterAttribute,
38813881
no bias is defined. If the parameter is set to True,
38823882
the bias is initialized to zero.
@@ -7307,8 +7307,7 @@ def factorization_machine(input,
73077307
each latent vector is k.
73087308
73097309
For details of Factorization Machine, please refer to the paper:
7310-
Rendle, Steffen. Factorization machines. IEEE 10th International
7311-
Conference on Data Mining (ICDM). IEEE, 2010.
7310+
Factorization machines.
73127311
73137312
.. code-block:: python
73147313
factor_machine = factorization_machine(input=input_layer, factor_size=10)

0 commit comments

Comments
 (0)