Skip to content

Commit d8d35a0

Browse files
authored
Add se-resnext test for 2x2 and parallel exe (#12194)
* wip add se-resnext test for 2x2 and parallel exe * testing * finish dist unitest 2x2 * update python interp * fix gpu number * make this test can run in parallel
1 parent 3a6213f commit d8d35a0

File tree

2 files changed

+472
-0
lines changed

2 files changed

+472
-0
lines changed
Lines changed: 350 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,350 @@
1+
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
import numpy as np
16+
import argparse
17+
import time
18+
import math
19+
20+
import paddle
21+
import paddle.fluid as fluid
22+
import paddle.fluid.profiler as profiler
23+
from paddle.fluid import core
24+
import unittest
25+
from multiprocessing import Process
26+
import os
27+
import sys
28+
import signal
29+
30+
# Fix seed for test
31+
fluid.default_startup_program().random_seed = 1
32+
fluid.default_main_program().random_seed = 1
33+
34+
train_parameters = {
35+
"input_size": [3, 224, 224],
36+
"input_mean": [0.485, 0.456, 0.406],
37+
"input_std": [0.229, 0.224, 0.225],
38+
"learning_strategy": {
39+
"name": "piecewise_decay",
40+
"epochs": [30, 60, 90],
41+
"steps": [0.1, 0.01, 0.001, 0.0001]
42+
}
43+
}
44+
45+
46+
class SE_ResNeXt():
47+
def __init__(self, layers=50):
48+
self.params = train_parameters
49+
self.layers = layers
50+
51+
def net(self, input, class_dim=1000):
52+
layers = self.layers
53+
supported_layers = [50, 101, 152]
54+
assert layers in supported_layers, \
55+
"supported layers are {} but input layer is {}".format(supported_layers, layers)
56+
if layers == 50:
57+
cardinality = 32
58+
reduction_ratio = 16
59+
depth = [3, 4, 6, 3]
60+
num_filters = [128, 256, 512, 1024]
61+
62+
conv = self.conv_bn_layer(
63+
input=input,
64+
num_filters=64,
65+
filter_size=7,
66+
stride=2,
67+
act='relu')
68+
conv = fluid.layers.pool2d(
69+
input=conv,
70+
pool_size=3,
71+
pool_stride=2,
72+
pool_padding=1,
73+
pool_type='max')
74+
elif layers == 101:
75+
cardinality = 32
76+
reduction_ratio = 16
77+
depth = [3, 4, 23, 3]
78+
num_filters = [128, 256, 512, 1024]
79+
80+
conv = self.conv_bn_layer(
81+
input=input,
82+
num_filters=64,
83+
filter_size=7,
84+
stride=2,
85+
act='relu')
86+
conv = fluid.layers.pool2d(
87+
input=conv,
88+
pool_size=3,
89+
pool_stride=2,
90+
pool_padding=1,
91+
pool_type='max')
92+
elif layers == 152:
93+
cardinality = 64
94+
reduction_ratio = 16
95+
depth = [3, 8, 36, 3]
96+
num_filters = [128, 256, 512, 1024]
97+
98+
conv = self.conv_bn_layer(
99+
input=input,
100+
num_filters=64,
101+
filter_size=3,
102+
stride=2,
103+
act='relu')
104+
conv = self.conv_bn_layer(
105+
input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
106+
conv = self.conv_bn_layer(
107+
input=conv,
108+
num_filters=128,
109+
filter_size=3,
110+
stride=1,
111+
act='relu')
112+
conv = fluid.layers.pool2d(
113+
input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
114+
pool_type='max')
115+
116+
for block in range(len(depth)):
117+
for i in range(depth[block]):
118+
conv = self.bottleneck_block(
119+
input=conv,
120+
num_filters=num_filters[block],
121+
stride=2 if i == 0 and block != 0 else 1,
122+
cardinality=cardinality,
123+
reduction_ratio=reduction_ratio)
124+
125+
pool = fluid.layers.pool2d(
126+
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
127+
drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
128+
stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
129+
out = fluid.layers.fc(input=drop, size=class_dim, act='softmax')
130+
return out
131+
132+
def shortcut(self, input, ch_out, stride):
133+
ch_in = input.shape[1]
134+
if ch_in != ch_out or stride != 1:
135+
filter_size = 1
136+
return self.conv_bn_layer(input, ch_out, filter_size, stride)
137+
else:
138+
return input
139+
140+
def bottleneck_block(self, input, num_filters, stride, cardinality,
141+
reduction_ratio):
142+
conv0 = self.conv_bn_layer(
143+
input=input, num_filters=num_filters, filter_size=1, act='relu')
144+
conv1 = self.conv_bn_layer(
145+
input=conv0,
146+
num_filters=num_filters,
147+
filter_size=3,
148+
stride=stride,
149+
groups=cardinality,
150+
act='relu')
151+
conv2 = self.conv_bn_layer(
152+
input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
153+
scale = self.squeeze_excitation(
154+
input=conv2,
155+
num_channels=num_filters * 2,
156+
reduction_ratio=reduction_ratio)
157+
158+
short = self.shortcut(input, num_filters * 2, stride)
159+
160+
return fluid.layers.elementwise_add(x=short, y=scale, act='relu')
161+
162+
def conv_bn_layer(self,
163+
input,
164+
num_filters,
165+
filter_size,
166+
stride=1,
167+
groups=1,
168+
act=None):
169+
conv = fluid.layers.conv2d(
170+
input=input,
171+
num_filters=num_filters,
172+
filter_size=filter_size,
173+
stride=stride,
174+
padding=(filter_size - 1) / 2,
175+
groups=groups,
176+
act=None,
177+
bias_attr=False)
178+
return fluid.layers.batch_norm(input=conv, act=act)
179+
180+
def squeeze_excitation(self, input, num_channels, reduction_ratio):
181+
pool = fluid.layers.pool2d(
182+
input=input, pool_size=0, pool_type='avg', global_pooling=True)
183+
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
184+
squeeze = fluid.layers.fc(input=pool,
185+
size=num_channels / reduction_ratio,
186+
act='relu')
187+
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
188+
excitation = fluid.layers.fc(input=squeeze,
189+
size=num_channels,
190+
act='sigmoid')
191+
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
192+
return scale
193+
194+
195+
def get_model(batch_size):
196+
# Input data
197+
image = fluid.layers.fill_constant(
198+
shape=[batch_size, 3, 224, 224], dtype='float32', value=0.0)
199+
label = fluid.layers.fill_constant(
200+
shape=[batch_size, 1], dtype='int64', value=0.0)
201+
202+
# Train program
203+
model = SE_ResNeXt(layers=50)
204+
out = model.net(input=image, class_dim=102)
205+
cost = fluid.layers.cross_entropy(input=out, label=label)
206+
207+
avg_cost = fluid.layers.mean(x=cost)
208+
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
209+
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
210+
211+
# Evaluator
212+
test_program = fluid.default_main_program().clone(for_test=True)
213+
214+
# Optimization
215+
total_images = 6149 # flowers
216+
epochs = [30, 60, 90]
217+
step = int(total_images / batch_size + 1)
218+
219+
bd = [step * e for e in epochs]
220+
base_lr = 0.1
221+
lr = []
222+
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
223+
224+
optimizer = fluid.optimizer.Momentum(
225+
learning_rate=fluid.layers.piecewise_decay(
226+
boundaries=bd, values=lr),
227+
momentum=0.9,
228+
regularization=fluid.regularizer.L2Decay(1e-4))
229+
optimizer.minimize(avg_cost)
230+
231+
# Reader
232+
train_reader = paddle.batch(
233+
paddle.dataset.flowers.train(), batch_size=batch_size)
234+
test_reader = paddle.batch(
235+
paddle.dataset.flowers.test(), batch_size=batch_size)
236+
237+
return test_program, avg_cost, train_reader, test_reader, acc_top1, out
238+
239+
240+
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
241+
t = fluid.DistributeTranspiler()
242+
t.transpile(
243+
trainer_id=trainer_id,
244+
program=main_program,
245+
pservers=pserver_endpoints,
246+
trainers=trainers)
247+
return t
248+
249+
250+
class DistSeResneXt2x2:
251+
def run_pserver(self, pserver_endpoints, trainers, current_endpoint,
252+
trainer_id):
253+
get_model(batch_size=2)
254+
t = get_transpiler(trainer_id,
255+
fluid.default_main_program(), pserver_endpoints,
256+
trainers)
257+
pserver_prog = t.get_pserver_program(current_endpoint)
258+
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
259+
260+
place = fluid.CPUPlace()
261+
exe = fluid.Executor(place)
262+
exe.run(startup_prog)
263+
exe.run(pserver_prog)
264+
265+
def _wait_ps_ready(self, pid):
266+
retry_times = 20
267+
while True:
268+
assert retry_times >= 0, "wait ps ready failed"
269+
time.sleep(3)
270+
print("waiting ps ready: ", pid)
271+
try:
272+
# the listen_and_serv_op would touch a file which contains the listen port
273+
# on the /tmp directory until it was ready to process all the RPC call.
274+
os.stat("/tmp/paddle.%d.port" % pid)
275+
return
276+
except os.error:
277+
retry_times -= 1
278+
279+
def run_trainer(self, place, endpoints, trainer_id, trainers, is_dist=True):
280+
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = get_model(
281+
batch_size=20)
282+
if is_dist:
283+
t = get_transpiler(trainer_id,
284+
fluid.default_main_program(), endpoints,
285+
trainers)
286+
trainer_prog = t.get_trainer_program()
287+
else:
288+
trainer_prog = fluid.default_main_program()
289+
290+
startup_exe = fluid.Executor(place)
291+
startup_exe.run(fluid.default_startup_program())
292+
293+
strategy = fluid.ExecutionStrategy()
294+
strategy.num_threads = 1
295+
strategy.allow_op_delay = False
296+
exe = fluid.ParallelExecutor(
297+
True,
298+
loss_name=avg_cost.name,
299+
exec_strategy=strategy,
300+
num_trainers=trainers,
301+
trainer_id=trainer_id)
302+
303+
feed_var_list = [
304+
var for var in trainer_prog.global_block().vars.itervalues()
305+
if var.is_data
306+
]
307+
308+
feeder = fluid.DataFeeder(feed_var_list, place)
309+
reader_generator = train_reader()
310+
first_loss, = exe.run(fetch_list=[avg_cost.name])
311+
print(first_loss)
312+
for i in xrange(5):
313+
loss, = exe.run(fetch_list=[avg_cost.name])
314+
last_loss, = exe.run(fetch_list=[avg_cost.name])
315+
print(last_loss)
316+
317+
318+
def main(role="pserver",
319+
endpoints="127.0.0.1:9123",
320+
trainer_id=0,
321+
current_endpoint="127.0.0.1:9123",
322+
trainers=1,
323+
is_dist=True):
324+
model = DistSeResneXt2x2()
325+
if role == "pserver":
326+
model.run_pserver(endpoints, trainers, current_endpoint, trainer_id)
327+
else:
328+
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
329+
) else fluid.CPUPlace()
330+
model.run_trainer(p, endpoints, trainer_id, trainers, is_dist)
331+
332+
333+
if __name__ == "__main__":
334+
if len(sys.argv) != 7:
335+
print(
336+
"Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
337+
)
338+
role = sys.argv[1]
339+
endpoints = sys.argv[2]
340+
trainer_id = int(sys.argv[3])
341+
current_endpoint = sys.argv[4]
342+
trainers = int(sys.argv[5])
343+
is_dist = True if sys.argv[6] == "TRUE" else False
344+
main(
345+
role=role,
346+
endpoints=endpoints,
347+
trainer_id=trainer_id,
348+
current_endpoint=current_endpoint,
349+
trainers=trainers,
350+
is_dist=is_dist)

0 commit comments

Comments
 (0)