|
| 1 | +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +from __future__ import print_function |
| 16 | + |
| 17 | +import math |
| 18 | + |
| 19 | +from .. import unique_name |
| 20 | + |
| 21 | +__all__ = [ |
| 22 | + 'NoamDecay', 'PiecewiseDecay', 'NaturalExpDecay', 'ExponentialDecay', |
| 23 | + 'InverseTimeDecay', 'PolynomialDecay', 'CosineDecay' |
| 24 | +] |
| 25 | + |
| 26 | + |
| 27 | +class LearningRateDecay(object): |
| 28 | + """ |
| 29 | + Base class of learning rate decay |
| 30 | + """ |
| 31 | + |
| 32 | + def __init__(self, begin=0, step=1, dtype='float32'): |
| 33 | + self.step_num = begin |
| 34 | + self.step_size = step |
| 35 | + self.dtype = dtype |
| 36 | + |
| 37 | + def __call__(self): |
| 38 | + lr = self.step() |
| 39 | + if isinstance(lr, float): |
| 40 | + lr = self.create_lr_var(lr) |
| 41 | + self.step_num += self.step_size |
| 42 | + return lr |
| 43 | + |
| 44 | + def create_lr_var(self, lr): |
| 45 | + from .. import layers |
| 46 | + lr = layers.create_global_var( |
| 47 | + name=unique_name.generate("learning_rate"), |
| 48 | + shape=[1], |
| 49 | + value=float(lr), |
| 50 | + dtype=self.dtype, |
| 51 | + persistable=True) |
| 52 | + return lr |
| 53 | + |
| 54 | + def step(self): |
| 55 | + raise NotImplementedError() |
| 56 | + |
| 57 | + |
| 58 | +class PiecewiseDecay(LearningRateDecay): |
| 59 | + def __init__(self, boundaries, values, begin, step=1, dtype='float32'): |
| 60 | + super(PiecewiseDecay, self).__init__(begin, step, dtype) |
| 61 | + self.boundaries = boundaries |
| 62 | + self.values = values |
| 63 | + |
| 64 | + self.vars = [] |
| 65 | + for value in values: |
| 66 | + self.vars.append(self.create_lr_var(value)) |
| 67 | + |
| 68 | + def step(self): |
| 69 | + for i in range(len(self.boundaries)): |
| 70 | + if self.step_num < self.boundaries[i]: |
| 71 | + return self.vars[i] |
| 72 | + return self.vars[len(self.values) - 1] |
| 73 | + |
| 74 | + |
| 75 | +class NaturalExpDecay(LearningRateDecay): |
| 76 | + def __init__(self, |
| 77 | + learning_rate, |
| 78 | + decay_steps, |
| 79 | + decay_rate, |
| 80 | + staircase=False, |
| 81 | + begin=0, |
| 82 | + step=1, |
| 83 | + dtype='float32'): |
| 84 | + super(NaturalExpDecay, self).__init__(begin, step, dtype) |
| 85 | + self.learning_rate = learning_rate |
| 86 | + self.decay_steps = decay_steps |
| 87 | + self.decay_rate = decay_rate |
| 88 | + self.staircase = staircase |
| 89 | + |
| 90 | + def step(self): |
| 91 | + from .. import layers |
| 92 | + div_res = self.create_lr_var(self.step_num / self.decay_steps) |
| 93 | + if self.staircase: |
| 94 | + div_res = layers.floor(div_res) |
| 95 | + decayed_lr = self.learning_rate * layers.exp(-1 * self.decay_rate * |
| 96 | + div_res) |
| 97 | + |
| 98 | + return decayed_lr |
| 99 | + |
| 100 | + |
| 101 | +class ExponentialDecay(LearningRateDecay): |
| 102 | + def __init__(self, |
| 103 | + learning_rate, |
| 104 | + decay_steps, |
| 105 | + decay_rate, |
| 106 | + staircase=False, |
| 107 | + begin=0, |
| 108 | + step=1, |
| 109 | + dtype='float32'): |
| 110 | + super(ExponentialDecay, self).__init__(begin, step, dtype) |
| 111 | + self.learning_rate = learning_rate |
| 112 | + self.decay_steps = decay_steps |
| 113 | + self.decay_rate = decay_rate |
| 114 | + self.staircase = staircase |
| 115 | + |
| 116 | + def step(self): |
| 117 | + from .. import layers |
| 118 | + div_res = self.create_lr_var(self.step_num / self.decay_steps) |
| 119 | + if self.staircase: |
| 120 | + div_res = layers.floor(div_res) |
| 121 | + |
| 122 | + decayed_lr = self.learning_rate * (self.decay_rate**div_res) |
| 123 | + |
| 124 | + return decayed_lr |
| 125 | + |
| 126 | + |
| 127 | +class InverseTimeDecay(LearningRateDecay): |
| 128 | + def __init__(self, |
| 129 | + learning_rate, |
| 130 | + decay_steps, |
| 131 | + decay_rate, |
| 132 | + staircase=False, |
| 133 | + begin=0, |
| 134 | + step=1, |
| 135 | + dtype='float32'): |
| 136 | + super(InverseTimeDecay, self).__init__(begin, step, dtype) |
| 137 | + self.learning_rate = learning_rate |
| 138 | + self.decay_steps = decay_steps |
| 139 | + self.decay_rate = decay_rate |
| 140 | + self.staircase = staircase |
| 141 | + |
| 142 | + def step(self): |
| 143 | + from .. import layers |
| 144 | + div_res = self.create_lr_var(self.step_num / self.decay_steps) |
| 145 | + if self.staircase: |
| 146 | + div_res = layers.floor(div_res) |
| 147 | + |
| 148 | + decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res) |
| 149 | + |
| 150 | + return decayed_lr |
| 151 | + |
| 152 | + |
| 153 | +class PolynomialDecay(LearningRateDecay): |
| 154 | + def __init__(self, |
| 155 | + learning_rate, |
| 156 | + decay_steps, |
| 157 | + end_learning_rate=0.0001, |
| 158 | + power=1.0, |
| 159 | + cycle=False, |
| 160 | + begin=0, |
| 161 | + step=1, |
| 162 | + dtype='float32'): |
| 163 | + super(PolynomialDecay, self).__init__(begin, step, dtype) |
| 164 | + self.learning_rate = learning_rate |
| 165 | + self.decay_steps = decay_steps |
| 166 | + self.end_learning_rate = end_learning_rate |
| 167 | + self.power = power |
| 168 | + self.cycle = cycle |
| 169 | + |
| 170 | + def step(self): |
| 171 | + from .. import layers |
| 172 | + tmp_step_num = self.step_num |
| 173 | + tmp_decay_steps = self.decay_steps |
| 174 | + if self.cycle: |
| 175 | + div_res = layers.ceil( |
| 176 | + self.create_lr_var(tmp_step_num / float(self.decay_steps))) |
| 177 | + |
| 178 | + if tmp_step_num == 0: |
| 179 | + div_res = self.create_lr_var(1.0) |
| 180 | + tmp_decay_steps = self.decay_steps * div_res |
| 181 | + else: |
| 182 | + tmp_step_num = self.create_lr_var(tmp_step_num |
| 183 | + if tmp_step_num < self.decay_steps |
| 184 | + else self.decay_steps) |
| 185 | + |
| 186 | + decayed_lr = (self.learning_rate - self.end_learning_rate) * \ |
| 187 | + ((1 - tmp_step_num / tmp_decay_steps) ** self.power) + self.end_learning_rate |
| 188 | + return decayed_lr |
| 189 | + |
| 190 | + |
| 191 | +class CosineDecay(LearningRateDecay): |
| 192 | + def __init__(self, |
| 193 | + learning_rate, |
| 194 | + step_each_epoch, |
| 195 | + epochs, |
| 196 | + begin=0, |
| 197 | + step=1, |
| 198 | + dtype='float32'): |
| 199 | + super(CosineDecay, self).__init__(begin, step, dtype) |
| 200 | + self.learning_rate = learning_rate |
| 201 | + self.step_each_epoch = step_each_epoch |
| 202 | + self.epochs = epochs |
| 203 | + |
| 204 | + def step(self): |
| 205 | + from .. import layers |
| 206 | + cur_epoch = layers.floor( |
| 207 | + self.create_lr_var(self.step_num / self.step_each_epoch)) |
| 208 | + decayed_lr = self.learning_rate * 0.5 * ( |
| 209 | + layers.cos(cur_epoch * math.pi / self.epochs) + 1) |
| 210 | + return decayed_lr |
| 211 | + |
| 212 | + |
| 213 | +class NoamDecay(LearningRateDecay): |
| 214 | + def __init__(self, d_model, warmup_steps, begin=1, step=1, dtype='float32'): |
| 215 | + super(NoamDecay, self).__init__(begin, step, dtype) |
| 216 | + self.d_model = d_model |
| 217 | + self.warmup_steps = warmup_steps |
| 218 | + |
| 219 | + def step(self): |
| 220 | + from .. import layers |
| 221 | + a = self.create_lr_var(self.step_num**-0.5) |
| 222 | + b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num) |
| 223 | + lr_value = (self.d_model**-0.5) * layers.elementwise_min(a, b) |
| 224 | + return lr_value |
0 commit comments