Skip to content

Commit e658762

Browse files
authored
Merge pull request #12313 from sneaxiy/py_reader_doc
Modify PyReader doc in python/paddle/fluid/layers/io.py
2 parents a4c0608 + 380ab62 commit e658762

File tree

1 file changed

+104
-32
lines changed
  • python/paddle/fluid/layers

1 file changed

+104
-32
lines changed

python/paddle/fluid/layers/io.py

Lines changed: 104 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -456,52 +456,124 @@ def py_reader(capacity,
456456
name=None,
457457
use_double_buffer=True):
458458
"""
459-
Create a reader and blocking queue for data feeding in Python
459+
Create a Python reader for data feeding in Python
460460
461-
This layer returns a Reader Variable and a BlockingQueue.
462-
The BlockingQueue provides `push()` method to push a `LoDTensorArray`
463-
object into the queue in Python side. In C++ side, the Reader
464-
Variable would invoke `pop()` method of the queue to retrieve the
465-
feeding data. The process of feeding data in Python side and fetching
466-
data in C++ side can run in parallel. The BlockingQueue should be closed
467-
using `close()` method when unused.
461+
This layer returns a Reader Variable.
462+
The Reader provides :code:`decorate_paddle_reader()` and
463+
:code:`decorate_tensor_provider()` to set a Python generator as the data
464+
source in Python side. When :code:`Executor::Run()` is invoked in C++
465+
side, the data from the generator would be read automatically. Unlike
466+
:code:`DataFeeder.feed()`, the data reading process and
467+
:code:`Executor::Run()` process can run in parallel using
468+
:code:`py_reader`. The :code:`start()` method of the Reader should be
469+
called when each pass begins, while the :code:`reset()` method should be
470+
called when the pass ends and :code:`fluid.core.EOFException` raises.
471+
Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
468472
469473
Args:
470-
use_double_buffer(bool): Whether use double buffer or not.
471-
capacity(int): The maximum capacity of the BlockingQueue.
474+
capacity(int): The buffer capacity maintained by :code:`py_reader`.
472475
shapes(list|tuple): List of tuples which declaring data shapes.
473476
dtypes(list|tuple): List of strs which declaring data type.
474477
lod_levels(list|tuple): List of ints which declaring data lod_level.
475478
name(basestring): The prefix Python queue name and Reader name. None will
476479
be generated automatically.
480+
use_double_buffer(bool): Whether use double buffer or not.
477481
478482
Returns:
479-
tuple(Variable, BlockingQueue):
480-
A Reader Variable from which we can get feeding data.
481-
482-
A BlockingQueue object for data feeding.
483+
Variable: A Reader from which we can get feeding data.
483484
484485
Examples:
485486
486-
.. code-block:: python
487+
1. The basic usage of :code:`py_reader` is as follows:
487488
488-
reader, queue = fluid.layers.py_reader(
489-
capacity=10,
490-
shapes=[[-1,3,224,224], [-1,1]],
491-
dtypes=['float32', 'int64'])
492-
# Via the reader, we can use 'read_file' layer to get data:
493-
image, label = fluid.layers.read_file(reader)
494-
495-
# Via the blocking queue, we can feed data using threads
496-
def feed_data(queue, feed_images, feed_labels):
497-
for feed_image, feed_label in zip(feed_images, feed_labels):
498-
data = core.LoDTensorArray()
499-
data.append(feed_image)
500-
data.append(feed_label)
501-
queue.push(data)
502-
503-
thread = threading.Thread(target=feed_data, args=(queue, feed_images, feed_labels))
504-
thread.start()
489+
>>> import paddle.v2
490+
>>> import paddle.fluid as fluid
491+
>>> import paddle.dataset.mnist as mnist
492+
>>>
493+
>>> reader = fluid.layers.py_reader(capacity=64,
494+
>>> shapes=[(-1,3,224,224), (-1,1)],
495+
>>> dtypes=['float32', 'int64'])
496+
>>> reader.decorate_paddle_reader(
497+
>>> paddle.v2.reader.shuffle(paddle.batch(mnist.train())
498+
>>>
499+
>>> img, label = fluid.layers.read_file(reader)
500+
>>> loss = network(img, label) # some network definition
501+
>>>
502+
>>> fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
503+
>>>
504+
>>> exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
505+
>>> for epoch_id in range(10):
506+
>>> reader.start()
507+
>>> try:
508+
>>> while True:
509+
>>> exe.run(fetch_list=[loss.name])
510+
>>> except fluid.core.EOFException:
511+
>>> reader.reset()
512+
513+
2. When training and testing are both performed, two different
514+
:code:`py_reader` should be created with different names, e.g.:
515+
516+
>>> import paddle.v2
517+
>>> import paddle.fluid as fluid
518+
>>> import paddle.dataset.mnist as mnist
519+
>>>
520+
>>> def network(reader):
521+
>>> img, label = fluid.layers.read_file(reader)
522+
>>> # Here, we omitted the network definition
523+
>>> return loss
524+
>>>
525+
>>> train_reader = fluid.layers.py_reader(capacity=64,
526+
>>> shapes=[(-1,3,224,224), (-1,1)],
527+
>>> dtypes=['float32', 'int64'],
528+
>>> name='train_reader')
529+
>>> train_reader.decorate_paddle_reader(
530+
>>> paddle.v2.reader.shuffle(paddle.batch(mnist.train())
531+
>>>
532+
>>> test_reader = fluid.layers.py_reader(capacity=32,
533+
>>> shapes=[(-1,3,224,224), (-1,1)],
534+
>>> dtypes=['float32', 'int64'],
535+
>>> name='test_reader')
536+
>>> test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
537+
>>>
538+
>>> # Create train_main_prog and train_startup_prog
539+
>>> train_main_prog = fluid.Program()
540+
>>> train_startup_prog = fluid.Program()
541+
>>> with fluid.program_guard(train_main_prog, train_startup_prog):
542+
>>> # Use fluid.unique_name.guard() to share parameters with test program
543+
>>> with fluid.unique_name.guard():
544+
>>> train_loss = network(train_reader) # some network definition
545+
>>> adam = fluid.optimizer.Adam(learning_rate=0.01)
546+
>>> adam.minimize(loss)
547+
>>>
548+
>>> # Create test_main_prog and test_startup_prog
549+
>>> test_main_prog = fluid.Program()
550+
>>> test_startup_prog = fluid.Program()
551+
>>> with fluid.program_guard(test_main_prog, test_startup_prog):
552+
>>> # Use fluid.unique_name.guard() to share parameters with train program
553+
>>> with fluid.unique_name.guard():
554+
>>> test_loss = network(test_reader)
555+
>>>
556+
>>> fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
557+
>>> fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)
558+
>>>
559+
>>> train_exe = fluid.ParallelExecutor(use_cuda=True,
560+
>>> loss_name=train_loss.name, main_program=train_main_prog)
561+
>>> test_exe = fluid.ParallelExecutor(use_cuda=True,
562+
>>> loss_name=test_loss.name, main_program=test_main_prog)
563+
>>> for epoch_id in range(10):
564+
>>> train_reader.start()
565+
>>> try:
566+
>>> while True:
567+
>>> train_exe.run(fetch_list=[train_loss.name])
568+
>>> except fluid.core.EOFException:
569+
>>> train_reader.reset()
570+
>>>
571+
>>> test_reader.start()
572+
>>> try:
573+
>>> while True:
574+
>>> test_exe.run(fetch_list=[test_loss.name])
575+
>>> except fluid.core.EOFException:
576+
>>> test_reader.reset()
505577
"""
506578
dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
507579
shape_concat = []

0 commit comments

Comments
 (0)