Skip to content

Commit e7d8e16

Browse files
committed
update softmax_mkldnn_op
1 parent dc111d3 commit e7d8e16

File tree

1 file changed

+46
-25
lines changed

1 file changed

+46
-25
lines changed

paddle/fluid/operators/softmax_mkldnn_op.cc

Lines changed: 46 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -26,9 +26,9 @@ using paddle::platform::MKLDNNMemDesc;
2626

2727
using mkldnn::memory; // Note: paddle has also "memory" namespace
2828
using mkldnn::primitive;
29-
using mkldnn::softmax_forward;
30-
using mkldnn::softmax_backward;
3129
using mkldnn::prop_kind;
30+
using mkldnn::softmax_backward;
31+
using mkldnn::softmax_forward;
3232
using mkldnn::stream;
3333
using platform::to_void_cast;
3434

@@ -113,17 +113,27 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
113113
auto mkldnn_engine = dev_ctx.GetEngine();
114114
const Tensor* input = ctx.Input<Tensor>("X");
115115
Tensor* output = ctx.Output<Tensor>("Out");
116-
PADDLE_ENFORCE(input->dims().size() == 2UL,
117-
"The input of softmax op must be a 2D matrix.");
118-
const T* input_data = input->data<T>();
119-
// allocate memory for output
120-
T* output_data = output->mutable_data<T>(ctx.GetPlace());
121-
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
122-
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
123-
// MKL-DNN does support softmax over selected axis. Having 2D Tensor,
124-
// we will make normalization after final eg. axis: 1
125-
PADDLE_ENFORCE(((src_tz[0] == dst_tz[0]) && (src_tz[1] == dst_tz[1])),
126-
"Softmax input and output dimensions should match");
116+
PADDLE_ENFORCE_EQ(
117+
input->dims(), output->dims(),
118+
"The shape of softmax's input and output must be identical.");
119+
120+
// make sure 'output' holds memory, which will be shared by
121+
// 'flattened_output' later.
122+
output->mutable_data<T>(ctx.GetPlace());
123+
124+
// flatten input and output to 2-D matrixs
125+
auto dims = input->dims(); // input and output share the same shape
126+
auto flattened_dims = framework::flatten_to_2d(dims, dims.size() - 1);
127+
framework::Tensor flattened_input;
128+
framework::Tensor flattened_output;
129+
flattened_input.ShareDataWith(*input).Resize(flattened_dims);
130+
flattened_output.ShareDataWith(*output).Resize(flattened_dims);
131+
132+
const T* input_data = flattened_input.data<T>();
133+
T* output_data = flattened_output.mutable_data<T>(ctx.GetPlace());
134+
135+
std::vector<int> src_tz = paddle::framework::vectorize2int(flattened_dims);
136+
std::vector<int> dst_tz = src_tz;
127137
// Same memory descriptor to be used for input and output
128138
memory::dims softmax_tz = {src_tz[0], src_tz[1]};
129139
// Generate keys for storing/retriving primitives for this operator
@@ -174,23 +184,34 @@ class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
174184
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
175185
auto mkldnn_engine = dev_ctx.GetEngine();
176186
const Tensor* output = ctx.Input<Tensor>("Out");
177-
const T* dst_data = output->data<T>();
178-
179187
auto* dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
180-
const auto* diff_dst_ptr = dout->template data<T>();
181-
182188
auto* dx =
183189
ctx.template Output<framework::Tensor>(framework::GradVarName("X"));
184-
T* diff_src_ptr = dx->template mutable_data<T>(ctx.GetPlace());
185190

186-
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
191+
PADDLE_ENFORCE_EQ(
192+
dout->dims(), dx->dims(),
193+
"The shape of softmax_grad's input and output must be identical.");
194+
195+
// make sure 'dx' holds memory, which will be shared by 'flattened_dx'
196+
// later.
197+
dx->template mutable_data<T>(ctx.GetPlace());
198+
199+
auto dims = dout->dims(); // input and output share the same shape
200+
auto flattened_dims = framework::flatten_to_2d(dims, dims.size() - 1);
201+
framework::Tensor flattened_output;
202+
framework::Tensor flattened_dout;
203+
framework::Tensor flattened_dx;
204+
flattened_output.ShareDataWith(*output).Resize(flattened_dims);
205+
flattened_dout.ShareDataWith(*dout).Resize(flattened_dims);
206+
flattened_dx.ShareDataWith(*dx).Resize(flattened_dims);
207+
208+
const T* dst_data = flattened_output.data<T>();
209+
const T* diff_dst_ptr = flattened_dout.template data<T>();
210+
T* diff_src_ptr = flattened_dx.template mutable_data<T>(ctx.GetPlace());
211+
212+
std::vector<int> dst_tz = paddle::framework::vectorize2int(flattened_dims);
187213
std::vector<int> src_tz(dst_tz);
188-
PADDLE_ENFORCE(output->dims().size() == 2UL,
189-
"The input of softmax op must be a 2D matrix.");
190-
// MKL-DNN does support softmax over selected axis. Having 2D Tensor,
191-
// we will make normalization after final eg. axis: 1
192-
PADDLE_ENFORCE(((src_tz[0] == dst_tz[0]) && (src_tz[1] == dst_tz[1])),
193-
"Softmax input and output dimensions should match");
214+
194215
// Same memory descriptor to be used for input and output
195216
memory::dims softmax_tz = {src_tz[0], src_tz[1]};
196217
// Currently only supports NC data format

0 commit comments

Comments
 (0)