|
| 1 | +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import sys |
| 16 | +import argparse |
| 17 | +import matplotlib.pyplot as plt |
| 18 | + |
| 19 | + |
| 20 | +def parse_args(): |
| 21 | + parser = argparse.ArgumentParser('Parse Log') |
| 22 | + parser.add_argument( |
| 23 | + '--file_path', '-f', type=str, help='the path of the log file') |
| 24 | + parser.add_argument( |
| 25 | + '--sample_rate', |
| 26 | + '-s', |
| 27 | + type=float, |
| 28 | + default=1.0, |
| 29 | + help='the rate to take samples from log') |
| 30 | + parser.add_argument( |
| 31 | + '--log_period', '-p', type=int, default=1, help='the period of log') |
| 32 | + |
| 33 | + args = parser.parse_args() |
| 34 | + return args |
| 35 | + |
| 36 | + |
| 37 | +def parse_file(file_name): |
| 38 | + loss = [] |
| 39 | + error = [] |
| 40 | + with open(file_name) as f: |
| 41 | + for i, line in enumerate(f): |
| 42 | + line = line.strip() |
| 43 | + if not line.startswith('pass'): |
| 44 | + continue |
| 45 | + line_split = line.split(' ') |
| 46 | + if len(line_split) != 5: |
| 47 | + continue |
| 48 | + |
| 49 | + loss_str = line_split[2][:-1] |
| 50 | + cur_loss = float(loss_str.split('=')[-1]) |
| 51 | + loss.append(cur_loss) |
| 52 | + |
| 53 | + err_str = line_split[3][:-1] |
| 54 | + cur_err = float(err_str.split('=')[-1]) |
| 55 | + error.append(cur_err) |
| 56 | + |
| 57 | + accuracy = [1.0 - err for err in error] |
| 58 | + |
| 59 | + return loss, accuracy |
| 60 | + |
| 61 | + |
| 62 | +def sample(metric, sample_rate): |
| 63 | + interval = int(1.0 / sample_rate) |
| 64 | + if interval > len(metric): |
| 65 | + return metric[:1] |
| 66 | + |
| 67 | + num = len(metric) / interval |
| 68 | + idx = [interval * i for i in range(num)] |
| 69 | + metric_sample = [metric[id] for id in idx] |
| 70 | + return metric_sample |
| 71 | + |
| 72 | + |
| 73 | +def plot_metric(metric, |
| 74 | + batch_id, |
| 75 | + graph_title, |
| 76 | + line_style='b-', |
| 77 | + line_label='y', |
| 78 | + line_num=1): |
| 79 | + plt.figure() |
| 80 | + plt.title(graph_title) |
| 81 | + if line_num == 1: |
| 82 | + plt.plot(batch_id, metric, line_style, label=line_label) |
| 83 | + else: |
| 84 | + for i in range(line_num): |
| 85 | + plt.plot(batch_id, metric[i], line_style[i], label=line_label[i]) |
| 86 | + plt.xlabel('batch') |
| 87 | + plt.ylabel(graph_title) |
| 88 | + plt.legend() |
| 89 | + plt.savefig(graph_title + '.jpg') |
| 90 | + plt.close() |
| 91 | + |
| 92 | + |
| 93 | +def main(): |
| 94 | + args = parse_args() |
| 95 | + assert args.sample_rate > 0. and args.sample_rate <= 1.0, "The sample rate should in the range (0, 1]." |
| 96 | + |
| 97 | + loss, accuracy = parse_file(args.file_path) |
| 98 | + batch = [args.log_period * i for i in range(len(loss))] |
| 99 | + |
| 100 | + batch_sample = sample(batch, args.sample_rate) |
| 101 | + loss_sample = sample(loss, args.sample_rate) |
| 102 | + accuracy_sample = sample(accuracy, args.sample_rate) |
| 103 | + |
| 104 | + plot_metric(loss_sample, batch_sample, 'loss', line_label='loss') |
| 105 | + plot_metric( |
| 106 | + accuracy_sample, |
| 107 | + batch_sample, |
| 108 | + 'accuracy', |
| 109 | + line_style='g-', |
| 110 | + line_label='accuracy') |
| 111 | + |
| 112 | + |
| 113 | +if __name__ == '__main__': |
| 114 | + main() |
0 commit comments