|
1 | 1 | ## Install and Build
|
2 | 2 |
|
3 |
| -TBD |
| 3 | +### Download & Install |
| 4 | + |
| 5 | + Download the latest C-API development package from CI system and install. You can find the required version in the table below: |
| 6 | +<table> |
| 7 | +<thead> |
| 8 | +<tr> |
| 9 | +<th>Version Tips</th> |
| 10 | +<th>C-API</th> |
| 11 | +</tr> |
| 12 | +</thead> |
| 13 | +<tbody> |
| 14 | +<tr> |
| 15 | +<td>cpu_avx_mkl</td> |
| 16 | +<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td> |
| 17 | +</tr> |
| 18 | +<tr> |
| 19 | +<td>cpu_avx_openblas</td> |
| 20 | +<td>-</td> |
| 21 | +</tr> |
| 22 | +<tr> |
| 23 | +<td>cpu_noavx_openblas</td> |
| 24 | +<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td> |
| 25 | +</tr> |
| 26 | +<tr> |
| 27 | +<td>cuda7.5_cudnn5_avx_mkl</td> |
| 28 | +<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td> |
| 29 | +</tr> |
| 30 | +<tr> |
| 31 | +<td>cuda8.0_cudnn5_avx_mkl</td> |
| 32 | +<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td> |
| 33 | +</tr> |
| 34 | +<tr> |
| 35 | +<td>cuda8.0_cudnn7_avx_mkl</td> |
| 36 | +<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td> |
| 37 | +</tr></tbody></table> |
| 38 | + |
| 39 | +### From source |
| 40 | + |
| 41 | + Users can also compile the C-API library from PaddlePaddle source code by compiling with the following compilation options: |
| 42 | + |
| 43 | +<table> |
| 44 | +<thead> |
| 45 | +<tr> |
| 46 | +<th>Options</th> |
| 47 | +<th>Value</th> |
| 48 | +</tr> |
| 49 | +</thead> |
| 50 | +<tbody> |
| 51 | +<tr> |
| 52 | +<td>WITH_C_API</td> |
| 53 | +<td>ON</td> |
| 54 | +</tr> |
| 55 | +<tr> |
| 56 | +<td>WITH_PYTHON</td> |
| 57 | +<td>OFF(recommended)</td> |
| 58 | +</tr> |
| 59 | +<tr> |
| 60 | +<td>WITH_SWIG_PY</td> |
| 61 | +<td>OFF(recommended)</td> |
| 62 | +</tr> |
| 63 | +<tr> |
| 64 | +<td>WITH_GOLANG</td> |
| 65 | +<td>OFF(recommended)</td> |
| 66 | +</tr> |
| 67 | +<tr> |
| 68 | +<td>WITH_GPU</td> |
| 69 | +<td>ON/OFF</td> |
| 70 | +</tr> |
| 71 | +<tr> |
| 72 | +<td>WITH_MKL</td> |
| 73 | +<td>ON/OFF</td> |
| 74 | +</tr></tbody></table> |
| 75 | + |
| 76 | +It is best to set up with recommended values to avoid linking with unnecessary libraries. Set other compilation options as you need. |
| 77 | + |
| 78 | +Pull the latest following code snippet from github, and configure compilation options(replace PADDLE_ROOT with the installation path of the PaddlePaddle C-API inference library): |
| 79 | + |
| 80 | +```shell |
| 81 | +PADDLE_ROOT=/path/of/capi |
| 82 | +git clone https://github.com/PaddlePaddle/Paddle.git |
| 83 | +cd Paddle |
| 84 | +mkdir build |
| 85 | +cd build |
| 86 | +cmake -DCMAKE_INSTALL_PREFIX=$PADDLE_ROOT \ |
| 87 | + -DCMAKE_BUILD_TYPE=Release \ |
| 88 | + -DWITH_C_API=ON \ |
| 89 | + -DWITH_SWIG_PY=OFF \ |
| 90 | + -DWITH_GOLANG=OFF \ |
| 91 | + -DWITH_PYTHON=OFF \ |
| 92 | + -DWITH_MKL=OFF \ |
| 93 | + -DWITH_GPU=OFF \ |
| 94 | + .. |
| 95 | +``` |
| 96 | + |
| 97 | +After running the above code to generate Makefile , run: `make && make install`. After successful compilation, the dependencies required by C-API(includes: (1)PaddlePaddle inference library and header files; (2) Third-party libraries and header files) will be stored in the `PADDLE_ROOT` directory. |
| 98 | + |
| 99 | +If the compilation is successful, see the following directory structure under `PADDLE_ROOT`(includes PaddlePaddle header files and libraries, and third-party libraries and header files(determined by the link methods if necessary)): |
| 100 | + |
| 101 | +```text |
| 102 | +├── include |
| 103 | +│ └── paddle |
| 104 | +│ ├── arguments.h |
| 105 | +│ ├── capi.h |
| 106 | +│ ├── capi_private.h |
| 107 | +│ ├── config.h |
| 108 | +│ ├── error.h |
| 109 | +│ ├── gradient_machine.h |
| 110 | +│ ├── main.h |
| 111 | +│ ├── matrix.h |
| 112 | +│ ├── paddle_capi.map |
| 113 | +│ └── vector.h |
| 114 | +├── lib |
| 115 | +│ ├── libpaddle_capi_engine.a |
| 116 | +│ ├── libpaddle_capi_layers.a |
| 117 | +│ ├── libpaddle_capi_shared.so |
| 118 | +│ └── libpaddle_capi_whole.a |
| 119 | +└── third_party |
| 120 | + ├── gflags |
| 121 | + │ ├── include |
| 122 | + │ │ └── gflags |
| 123 | + │ │ ├── gflags_completions.h |
| 124 | + │ │ ├── gflags_declare.h |
| 125 | + │ │ ... |
| 126 | + │ └── lib |
| 127 | + │ └── libgflags.a |
| 128 | + ├── glog |
| 129 | + │ ├── include |
| 130 | + │ │ └── glog |
| 131 | + │ │ ├── config.h |
| 132 | + │ │ ... |
| 133 | + │ └── lib |
| 134 | + │ └── libglog.a |
| 135 | + ├── openblas |
| 136 | + │ ├── include |
| 137 | + │ │ ├── cblas.h |
| 138 | + │ │ ... |
| 139 | + │ └── lib |
| 140 | + │ ... |
| 141 | + ├── protobuf |
| 142 | + │ ├── include |
| 143 | + │ │ └── google |
| 144 | + │ │ └── protobuf |
| 145 | + │ │ ... |
| 146 | + │ └── lib |
| 147 | + │ └── libprotobuf-lite.a |
| 148 | + └── zlib |
| 149 | + ├── include |
| 150 | + │ ... |
| 151 | + └── lib |
| 152 | + ... |
| 153 | +
|
| 154 | +``` |
| 155 | + |
| 156 | +### Linking Description: |
| 157 | + |
| 158 | +There are three kinds of linking methods: |
| 159 | + |
| 160 | +1. Linking with dynamic library `libpaddle_capi_shared.so`(This way is much more convenient and easier, **Without special requirements, it is recommended**), refer to the following: |
| 161 | + 1. Compiling with CPU version and using `OpenBLAS`; only need to link one library named `libpaddle_capi_shared.so` to develop prediction program through C-API. |
| 162 | + 1. Compiling with CPU version and using `MKL` lib, you need to link MKL library directly to develop prediction program through PaddlePaddle C-API, due to `MKL` has its own dynamic library. |
| 163 | + 1. Compiling with GPU version, CUDA library will be loaded dynamically on prediction program run-time, and also set CUDA library to `LD_LIBRARY_PATH` environment variable. |
| 164 | + |
| 165 | +2. Linking with static library `libpaddle_capi_whole.a`,refer to the following: |
| 166 | + 1. Specify `-Wl,--whole-archive` linking options. |
| 167 | + 1. Explicitly link third-party libraries such as `gflags`、`glog`、`libz`、`protobuf` .etc, you can find them under `PADDLE_ROOT/third_party` directory. |
| 168 | + 1. Use OpenBLAS library if compiling C-API,must explicitly link `libopenblas.a`. |
| 169 | + 1. Use MKL when compiling C-API, must explicitly link MKL dynamic library. |
| 170 | + |
| 171 | +3. Linking with static library `libpaddle_capi_layers.a` and `libpaddle_capi_engine.a`,refer to the following: |
| 172 | + 1. This linking methods is mainly used for mobile prediction. |
| 173 | + 1. Split `libpaddle_capi_whole.a` into two static linking library at least to reduce the size of linking libraries. |
| 174 | + 1. Specify `-Wl,--whole-archive -lpaddle_capi_layers` and `-Wl,--no-whole-archive -lpaddle_capi_engine` for linking. |
| 175 | + 1. The third-party dependencies need explicitly link same as method 2 above. |
0 commit comments