|
| 1 | +import unittest |
| 2 | +import paddle.v2 as paddle |
| 3 | +import paddle.v2.fluid.core as core |
| 4 | +import paddle.v2.fluid as fluid |
| 5 | +from paddle.v2.fluid.backward import append_backward |
| 6 | +import paddle.v2.fluid.framework as framework |
| 7 | +from paddle.v2.fluid.framework import Program, switch_main_program |
| 8 | +import bisect |
| 9 | +import numpy as np |
| 10 | + |
| 11 | +fluid.default_startup_program().random_seed = 1 |
| 12 | + |
| 13 | + |
| 14 | +class TestDyRnnStaticInput(unittest.TestCase): |
| 15 | + def setUp(self): |
| 16 | + self._delta = 0.005 |
| 17 | + self._max_sequence_len = 3 |
| 18 | + self._program = Program() |
| 19 | + switch_main_program(self._program) |
| 20 | + self.output_dim = 10 |
| 21 | + self.place = core.CPUPlace() |
| 22 | + self.prepare_x_tensor() |
| 23 | + self.prepare_static_input_tensor() |
| 24 | + self.exe = fluid.Executor(self.place) |
| 25 | + |
| 26 | + def prepare_x_tensor(self): |
| 27 | + self.x_tensor_dim = 10 |
| 28 | + lod = [[0, 2, 3, 6]] |
| 29 | + shape = [lod[0][-1], self.x_tensor_dim] |
| 30 | + self.x_tensor_data = np.random.random(shape).astype('float32') |
| 31 | + self.x_tensor = core.LoDTensor() |
| 32 | + self.x_tensor.set_lod(lod) |
| 33 | + self.x_tensor.set(self.x_tensor_data, self.place) |
| 34 | + |
| 35 | + def prepare_static_input_tensor(self): |
| 36 | + self.static_input_tensor_dim = 4 |
| 37 | + lod = [[0, 1, 3, 6]] |
| 38 | + shape = [lod[0][-1], self.static_input_tensor_dim] |
| 39 | + self.static_input_data = np.random.random(shape).astype('float32') |
| 40 | + self.static_input_tensor = core.LoDTensor() |
| 41 | + self.static_input_tensor.set_lod(lod) |
| 42 | + self.static_input_tensor.set(self.static_input_data, self.place) |
| 43 | + |
| 44 | + def fetch_value(self, var): |
| 45 | + fetch_outs = self.exe.run(feed={ |
| 46 | + 'x_tensor': self.x_tensor, |
| 47 | + 'static_input_tensor': self.static_input_tensor |
| 48 | + }, |
| 49 | + fetch_list=[var], |
| 50 | + return_numpy=False) |
| 51 | + return self._lodtensor_to_ndarray(fetch_outs[0]) |
| 52 | + |
| 53 | + def _lodtensor_to_ndarray(self, lod_tensor): |
| 54 | + dims = lod_tensor.get_dims() |
| 55 | + ndarray = np.zeros(shape=dims).astype('float32') |
| 56 | + for i in xrange(np.product(dims)): |
| 57 | + ndarray.ravel()[i] = lod_tensor.get_float_element(i) |
| 58 | + return ndarray, lod_tensor.lod() |
| 59 | + |
| 60 | + def build_graph(self, only_forward=False): |
| 61 | + x_tensor = fluid.layers.data( |
| 62 | + name='x_tensor', |
| 63 | + shape=[self.x_tensor_dim], |
| 64 | + dtype='float32', |
| 65 | + lod_level=1) |
| 66 | + x_tensor.stop_gradient = False |
| 67 | + |
| 68 | + static_input_tensor = fluid.layers.data( |
| 69 | + name='static_input_tensor', |
| 70 | + shape=[self.static_input_tensor_dim], |
| 71 | + dtype='float32', |
| 72 | + lod_level=1) |
| 73 | + static_input_tensor.stop_gradient = False |
| 74 | + |
| 75 | + if only_forward: |
| 76 | + static_input_out_array = self._program.global_block().create_var( |
| 77 | + name='static_input_out_array', |
| 78 | + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, |
| 79 | + dtype='float32') |
| 80 | + static_input_out_array.stop_gradient = True |
| 81 | + |
| 82 | + rnn = fluid.layers.DynamicRNN() |
| 83 | + with rnn.block(): |
| 84 | + step_x = rnn.step_input(x_tensor) |
| 85 | + step_static_input = rnn.static_input(static_input_tensor) |
| 86 | + if only_forward: |
| 87 | + fluid.layers.array_write( |
| 88 | + x=step_static_input, |
| 89 | + i=rnn.step_idx, |
| 90 | + array=static_input_out_array) |
| 91 | + last = fluid.layers.sequence_pool( |
| 92 | + input=step_static_input, pool_type='last') |
| 93 | + projected = fluid.layers.fc(input=[step_x, last], |
| 94 | + size=self.output_dim) |
| 95 | + rnn.output(projected) |
| 96 | + |
| 97 | + if only_forward: |
| 98 | + static_input_step_outs = [] |
| 99 | + step_idx = fluid.layers.fill_constant( |
| 100 | + shape=[1], dtype='int64', value=0) |
| 101 | + step_idx.stop_gradient = True |
| 102 | + |
| 103 | + for i in xrange(self._max_sequence_len): |
| 104 | + step_out = fluid.layers.array_read(static_input_out_array, |
| 105 | + step_idx) |
| 106 | + step_out.stop_gradient = True |
| 107 | + static_input_step_outs.append(step_out) |
| 108 | + fluid.layers.increment(x=step_idx, value=1.0, in_place=True) |
| 109 | + |
| 110 | + if only_forward: |
| 111 | + return static_input_step_outs |
| 112 | + |
| 113 | + last = fluid.layers.sequence_pool(input=rnn(), pool_type='last') |
| 114 | + loss = fluid.layers.mean(x=last) |
| 115 | + append_backward(loss) |
| 116 | + static_input_grad = self._program.global_block().var( |
| 117 | + framework.grad_var_name('static_input_tensor')) |
| 118 | + return static_input_grad, loss |
| 119 | + |
| 120 | + def get_seq_len_from_lod(self, lod): |
| 121 | + return [lod[0][i + 1] - lod[0][i] for i in xrange(len(lod[0]) - 1)] |
| 122 | + |
| 123 | + def get_expected_static_step_outs(self): |
| 124 | + x_lod = self.x_tensor.lod() |
| 125 | + x_seq_len = self.get_seq_len_from_lod(x_lod) |
| 126 | + x_seq_len_sorted = sorted(x_seq_len) |
| 127 | + x_sorted_indices = np.argsort(x_seq_len)[::-1] |
| 128 | + |
| 129 | + static_lod = self.static_input_tensor.lod() |
| 130 | + static_sliced = [ |
| 131 | + self.static_input_data[static_lod[0][i]:static_lod[0][i + 1]] |
| 132 | + for i in xrange(len(static_lod[0]) - 1) |
| 133 | + ] |
| 134 | + static_seq_len = self.get_seq_len_from_lod(static_lod) |
| 135 | + static_reordered = [] |
| 136 | + for i in xrange(len(x_sorted_indices)): |
| 137 | + static_reordered.extend(static_sliced[x_sorted_indices[i]].tolist()) |
| 138 | + static_seq_len_reordered = [ |
| 139 | + static_seq_len[x_sorted_indices[i]] |
| 140 | + for i in xrange(len(x_sorted_indices)) |
| 141 | + ] |
| 142 | + |
| 143 | + static_step_outs = [] |
| 144 | + static_step_lods = [] |
| 145 | + |
| 146 | + for i in xrange(self._max_sequence_len): |
| 147 | + end = len(x_seq_len) - bisect.bisect_left(x_seq_len_sorted, i + 1) |
| 148 | + lod = [0] |
| 149 | + for i in xrange(end): |
| 150 | + lod.append(static_seq_len_reordered[i] + lod[-1]) |
| 151 | + static_step_lods.append([lod]) |
| 152 | + end = lod[-1] |
| 153 | + static_step_outs.append( |
| 154 | + np.array(static_reordered[:end]).astype('float32')) |
| 155 | + |
| 156 | + return static_step_outs, static_step_lods |
| 157 | + |
| 158 | + def test_step_out(self): |
| 159 | + static_step_outs = self.build_graph(only_forward=True) |
| 160 | + self.exe.run(framework.default_startup_program()) |
| 161 | + expected_outs, expected_lods = self.get_expected_static_step_outs() |
| 162 | + for i in xrange(self._max_sequence_len): |
| 163 | + step_out, lod = self.fetch_value(static_step_outs[i]) |
| 164 | + self.assertTrue(np.allclose(step_out, expected_outs[i])) |
| 165 | + self.assertTrue(np.allclose(lod, expected_lods[i])) |
| 166 | + |
| 167 | + def test_network_gradient(self): |
| 168 | + static_input_grad, loss = self.build_graph() |
| 169 | + self.exe.run(framework.default_startup_program()) |
| 170 | + |
| 171 | + actual_gradients, actual_lod = self.fetch_value(static_input_grad) |
| 172 | + |
| 173 | + static_input_shape = self.static_input_tensor.get_dims() |
| 174 | + numeric_gradients = np.zeros(shape=static_input_shape).astype('float32') |
| 175 | + # calculate numeric gradients |
| 176 | + tensor_size = np.product(static_input_shape) |
| 177 | + for i in xrange(tensor_size): |
| 178 | + origin = self.static_input_tensor.get_float_element(i) |
| 179 | + x_pos = origin + self._delta |
| 180 | + self.static_input_tensor.set_float_element(i, x_pos) |
| 181 | + y_pos = self.fetch_value(loss)[0][0] |
| 182 | + x_neg = origin - self._delta |
| 183 | + self.static_input_tensor.set_float_element(i, x_neg) |
| 184 | + y_neg = self.fetch_value(loss)[0][0] |
| 185 | + self.static_input_tensor.set_float_element(i, origin) |
| 186 | + numeric_gradients.ravel()[i] = (y_pos - y_neg) / self._delta / 2 |
| 187 | + self.assertTrue(np.allclose(actual_gradients, numeric_gradients, 0.001)) |
| 188 | + self.assertTrue(np.allclose(actual_lod, self.static_input_tensor.lod())) |
| 189 | + |
| 190 | + |
| 191 | +if __name__ == '__main__': |
| 192 | + unittest.main() |
0 commit comments