@@ -454,6 +454,10 @@ def rpn_target_assign(bbox_pred,
454
454
455
455
def sigmoid_focal_loss (x , label , fg_num , gamma = 2.0 , alpha = 0.25 ):
456
456
"""
457
+ :alias_main: paddle.nn.functional.sigmoid_focal_loss
458
+ :alias: paddle.nn.functional.sigmoid_focal_loss,paddle.nn.functional.loss.sigmoid_focal_loss
459
+ :old_api: paddle.fluid.layers.sigmoid_focal_loss
460
+
457
461
**Sigmoid Focal Loss Operator.**
458
462
459
463
`Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
@@ -550,6 +554,10 @@ def detection_output(loc,
550
554
nms_eta = 1.0 ,
551
555
return_index = False ):
552
556
"""
557
+ :alias_main: paddle.nn.functional.detection_output
558
+ :alias: paddle.nn.functional.detection_output,paddle.nn.functional.vision.detection_output
559
+ :old_api: paddle.fluid.layers.detection_output
560
+
553
561
Given the regression locations, classification confidences and prior boxes,
554
562
calculate the detection outputs by performing following steps:
555
563
@@ -679,6 +687,10 @@ class number, M is number of bounding boxes.
679
687
@templatedoc ()
680
688
def iou_similarity (x , y , box_normalized = True , name = None ):
681
689
"""
690
+ :alias_main: paddle.nn.functional.iou_similarity
691
+ :alias: paddle.nn.functional.iou_similarity,paddle.nn.functional.loss.iou_similarity
692
+ :old_api: paddle.fluid.layers.iou_similarity
693
+
682
694
${comment}
683
695
684
696
Args:
@@ -735,6 +747,10 @@ def box_coder(prior_box,
735
747
name = None ,
736
748
axis = 0 ):
737
749
"""
750
+ :alias_main: paddle.nn.functional.box_coder
751
+ :alias: paddle.nn.functional.box_coder,paddle.nn.functional.vision.box_coder
752
+ :old_api: paddle.fluid.layers.box_coder
753
+
738
754
**Box Coder Layer**
739
755
740
756
Encode/Decode the target bounding box with the priorbox information.
@@ -922,6 +938,10 @@ def yolov3_loss(x,
922
938
name = None ,
923
939
scale_x_y = 1. ):
924
940
"""
941
+ :alias_main: paddle.nn.functional.yolov3_loss
942
+ :alias: paddle.nn.functional.yolov3_loss,paddle.nn.functional.vision.yolov3_loss
943
+ :old_api: paddle.fluid.layers.yolov3_loss
944
+
925
945
${comment}
926
946
927
947
Args:
@@ -1045,6 +1065,10 @@ def yolo_box(x,
1045
1065
name = None ,
1046
1066
scale_x_y = 1. ):
1047
1067
"""
1068
+ :alias_main: paddle.nn.functional.yolo_box
1069
+ :alias: paddle.nn.functional.yolo_box,paddle.nn.functional.vision.yolo_box
1070
+ :old_api: paddle.fluid.layers.yolo_box
1071
+
1048
1072
${comment}
1049
1073
1050
1074
Args:
@@ -1220,6 +1244,10 @@ def bipartite_match(dist_matrix,
1220
1244
dist_threshold = None ,
1221
1245
name = None ):
1222
1246
"""
1247
+ :alias_main: paddle.nn.functional.bipartite_match
1248
+ :alias: paddle.nn.functional.bipartite_match,paddle.nn.functional.vision.bipartite_match
1249
+ :old_api: paddle.fluid.layers.bipartite_match
1250
+
1223
1251
This operator implements a greedy bipartite matching algorithm, which is
1224
1252
used to obtain the matching with the maximum distance based on the input
1225
1253
distance matrix. For input 2D matrix, the bipartite matching algorithm can
@@ -1310,6 +1338,10 @@ def target_assign(input,
1310
1338
mismatch_value = None ,
1311
1339
name = None ):
1312
1340
"""
1341
+ :alias_main: paddle.nn.functional.target_assign
1342
+ :alias: paddle.nn.functional.target_assign,paddle.nn.functional.extension.target_assign
1343
+ :old_api: paddle.fluid.layers.target_assign
1344
+
1313
1345
This operator can be, for given the target bounding boxes or labels,
1314
1346
to assign classification and regression targets to each prediction as well as
1315
1347
weights to prediction. The weights is used to specify which prediction would
@@ -1424,6 +1456,10 @@ def ssd_loss(location,
1424
1456
normalize = True ,
1425
1457
sample_size = None ):
1426
1458
"""
1459
+ :alias_main: paddle.nn.functional.ssd_loss
1460
+ :alias: paddle.nn.functional.ssd_loss,paddle.nn.functional.loss.ssd_loss
1461
+ :old_api: paddle.fluid.layers.ssd_loss
1462
+
1427
1463
**Multi-box loss layer for object detection algorithm of SSD**
1428
1464
1429
1465
This layer is to compute detection loss for SSD given the location offset
@@ -1667,6 +1703,10 @@ def prior_box(input,
1667
1703
name = None ,
1668
1704
min_max_aspect_ratios_order = False ):
1669
1705
"""
1706
+ :alias_main: paddle.nn.functional.prior_box
1707
+ :alias: paddle.nn.functional.prior_box,paddle.nn.functional.vision.prior_box
1708
+ :old_api: paddle.fluid.layers.prior_box
1709
+
1670
1710
This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1671
1711
Each position of the input produce N prior boxes, N is determined by
1672
1712
the count of min_sizes, max_sizes and aspect_ratios, The size of the
@@ -1824,6 +1864,10 @@ def density_prior_box(input,
1824
1864
flatten_to_2d = False ,
1825
1865
name = None ):
1826
1866
"""
1867
+ :alias_main: paddle.nn.functional.density_prior_box
1868
+ :alias: paddle.nn.functional.density_prior_box,paddle.nn.functional.vision.density_prior_box
1869
+ :old_api: paddle.fluid.layers.density_prior_box
1870
+
1827
1871
1828
1872
This op generates density prior boxes for SSD(Single Shot MultiBox Detector)
1829
1873
algorithm. Each position of the input produce N prior boxes, N is
@@ -2012,6 +2056,8 @@ def multi_box_head(inputs,
2012
2056
name = None ,
2013
2057
min_max_aspect_ratios_order = False ):
2014
2058
"""
2059
+ :api_attr: Static Graph
2060
+
2015
2061
Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
2016
2062
regression location and classification confidence on multiple input feature
2017
2063
maps, then output the concatenate results. The details of this algorithm,
@@ -2287,6 +2333,10 @@ def anchor_generator(input,
2287
2333
offset = 0.5 ,
2288
2334
name = None ):
2289
2335
"""
2336
+ :alias_main: paddle.nn.functional.anchor_generator
2337
+ :alias: paddle.nn.functional.anchor_generator,paddle.nn.functional.vision.anchor_generator
2338
+ :old_api: paddle.fluid.layers.anchor_generator
2339
+
2290
2340
**Anchor generator operator**
2291
2341
2292
2342
Generate anchors for Faster RCNN algorithm.
@@ -2488,6 +2538,10 @@ def generate_proposal_labels(rpn_rois,
2488
2538
is_cls_agnostic = False ,
2489
2539
is_cascade_rcnn = False ):
2490
2540
"""
2541
+ :alias_main: paddle.nn.functional.generate_proposal_labels
2542
+ :alias: paddle.nn.functional.generate_proposal_labels,paddle.nn.functional.vision.generate_proposal_labels
2543
+ :old_api: paddle.fluid.layers.generate_proposal_labels
2544
+
2491
2545
**Generate Proposal Labels of Faster-RCNN**
2492
2546
2493
2547
This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
@@ -2602,6 +2656,10 @@ def generate_proposal_labels(rpn_rois,
2602
2656
def generate_mask_labels (im_info , gt_classes , is_crowd , gt_segms , rois ,
2603
2657
labels_int32 , num_classes , resolution ):
2604
2658
"""
2659
+ :alias_main: paddle.nn.functional.generate_mask_labels
2660
+ :alias: paddle.nn.functional.generate_mask_labels,paddle.nn.functional.vision.generate_mask_labels
2661
+ :old_api: paddle.fluid.layers.generate_mask_labels
2662
+
2605
2663
**Generate Mask Labels for Mask-RCNN**
2606
2664
2607
2665
This operator can be, for given the RoIs and corresponding labels,
@@ -2757,6 +2815,10 @@ def generate_proposals(scores,
2757
2815
name = None ,
2758
2816
return_rois_num = False ):
2759
2817
"""
2818
+ :alias_main: paddle.nn.functional.generate_proposals
2819
+ :alias: paddle.nn.functional.generate_proposals,paddle.nn.functional.vision.generate_proposals
2820
+ :old_api: paddle.fluid.layers.generate_proposals
2821
+
2760
2822
**Generate proposal Faster-RCNN**
2761
2823
2762
2824
This operation proposes RoIs according to each box with their
@@ -2867,6 +2929,10 @@ def generate_proposals(scores,
2867
2929
2868
2930
def box_clip (input , im_info , name = None ):
2869
2931
"""
2932
+ :alias_main: paddle.nn.functional.box_clip
2933
+ :alias: paddle.nn.functional.box_clip,paddle.nn.functional.vision.box_clip
2934
+ :old_api: paddle.fluid.layers.box_clip
2935
+
2870
2936
Clip the box into the size given by im_info
2871
2937
For each input box, The formula is given as follows:
2872
2938
@@ -3092,6 +3158,10 @@ def multiclass_nms(bboxes,
3092
3158
background_label = 0 ,
3093
3159
name = None ):
3094
3160
"""
3161
+ :alias_main: paddle.nn.functional.multiclass_nms
3162
+ :alias: paddle.nn.functional.multiclass_nms,paddle.nn.functional.extension.multiclass_nms
3163
+ :old_api: paddle.fluid.layers.multiclass_nms
3164
+
3095
3165
**Multiclass NMS**
3096
3166
3097
3167
This operator is to do multi-class non maximum suppression (NMS) on
@@ -3369,6 +3439,10 @@ def distribute_fpn_proposals(fpn_rois,
3369
3439
refer_scale ,
3370
3440
name = None ):
3371
3441
"""
3442
+ :alias_main: paddle.nn.functional.distribute_fpn_proposals
3443
+ :alias: paddle.nn.functional.distribute_fpn_proposals,paddle.nn.functional.vision.distribute_fpn_proposals
3444
+ :old_api: paddle.fluid.layers.distribute_fpn_proposals
3445
+
3372
3446
**This op only takes LoDTensor as input.** In Feature Pyramid Networks
3373
3447
(FPN) models, it is needed to distribute all proposals into different FPN
3374
3448
level, with respect to scale of the proposals, the referring scale and the
@@ -3454,6 +3528,10 @@ def box_decoder_and_assign(prior_box,
3454
3528
box_clip ,
3455
3529
name = None ):
3456
3530
"""
3531
+ :alias_main: paddle.nn.functional.box_decoder_and_assign
3532
+ :alias: paddle.nn.functional.box_decoder_and_assign,paddle.nn.functional.vision.box_decoder_and_assign
3533
+ :old_api: paddle.fluid.layers.box_decoder_and_assign
3534
+
3457
3535
${comment}
3458
3536
Args:
3459
3537
prior_box(${prior_box_type}): ${prior_box_comment}
@@ -3525,6 +3603,10 @@ def collect_fpn_proposals(multi_rois,
3525
3603
post_nms_top_n ,
3526
3604
name = None ):
3527
3605
"""
3606
+ :alias_main: paddle.nn.functional.collect_fpn_proposals
3607
+ :alias: paddle.nn.functional.collect_fpn_proposals,paddle.nn.functional.vision.collect_fpn_proposals
3608
+ :old_api: paddle.fluid.layers.collect_fpn_proposals
3609
+
3528
3610
**This OP only supports LoDTensor as input**. Concat multi-level RoIs
3529
3611
(Region of Interest) and select N RoIs with respect to multi_scores.
3530
3612
This operation performs the following steps:
0 commit comments