|
| 1 | +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +// |
| 3 | +// Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +// you may not use this file except in compliance with the License. |
| 5 | +// You may obtain a copy of the License at |
| 6 | +// |
| 7 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +// |
| 9 | +// Unless required by applicable law or agreed to in writing, software |
| 10 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +// See the License for the specific language governing permissions and |
| 13 | +// limitations under the License. |
| 14 | + |
| 15 | +#include "paddle/fluid/inference/tests/api/tester_helper.h" |
| 16 | + |
| 17 | +namespace paddle { |
| 18 | +namespace inference { |
| 19 | + |
| 20 | +struct DataRecord { |
| 21 | + std::vector<std::vector<int64_t>> title1_all, title2_all, title3_all, l1_all; |
| 22 | + std::vector<std::vector<int64_t>> title1, title2, title3, l1; |
| 23 | + std::vector<size_t> title1_lod, title2_lod, title3_lod, l1_lod; |
| 24 | + size_t batch_iter{0}; |
| 25 | + size_t batch_size{1}; |
| 26 | + size_t num_samples; // total number of samples |
| 27 | + DataRecord() = default; |
| 28 | + explicit DataRecord(const std::string &path, int batch_size = 1) |
| 29 | + : batch_size(batch_size) { |
| 30 | + Load(path); |
| 31 | + } |
| 32 | + DataRecord NextBatch() { |
| 33 | + DataRecord data; |
| 34 | + size_t batch_end = batch_iter + batch_size; |
| 35 | + // NOTE skip the final batch, if no enough data is provided. |
| 36 | + if (batch_end <= title1_all.size()) { |
| 37 | + data.title1_all.assign(title1_all.begin() + batch_iter, |
| 38 | + title1_all.begin() + batch_end); |
| 39 | + data.title2_all.assign(title2_all.begin() + batch_iter, |
| 40 | + title2_all.begin() + batch_end); |
| 41 | + data.title3_all.assign(title3_all.begin() + batch_iter, |
| 42 | + title3_all.begin() + batch_end); |
| 43 | + data.l1_all.assign(l1_all.begin() + batch_iter, |
| 44 | + l1_all.begin() + batch_end); |
| 45 | + // Prepare LoDs |
| 46 | + data.title1_lod.push_back(0); |
| 47 | + data.title2_lod.push_back(0); |
| 48 | + data.title3_lod.push_back(0); |
| 49 | + data.l1_lod.push_back(0); |
| 50 | + CHECK(!data.title1_all.empty()); |
| 51 | + CHECK(!data.title2_all.empty()); |
| 52 | + CHECK(!data.title3_all.empty()); |
| 53 | + CHECK(!data.l1_all.empty()); |
| 54 | + CHECK_EQ(data.title1_all.size(), data.title2_all.size()); |
| 55 | + CHECK_EQ(data.title1_all.size(), data.title3_all.size()); |
| 56 | + CHECK_EQ(data.title1_all.size(), data.l1_all.size()); |
| 57 | + for (size_t j = 0; j < data.title1_all.size(); j++) { |
| 58 | + data.title1.push_back(data.title1_all[j]); |
| 59 | + data.title2.push_back(data.title2_all[j]); |
| 60 | + data.title3.push_back(data.title3_all[j]); |
| 61 | + data.l1.push_back(data.l1_all[j]); |
| 62 | + // calculate lod |
| 63 | + data.title1_lod.push_back(data.title1_lod.back() + |
| 64 | + data.title1_all[j].size()); |
| 65 | + data.title2_lod.push_back(data.title2_lod.back() + |
| 66 | + data.title2_all[j].size()); |
| 67 | + data.title3_lod.push_back(data.title3_lod.back() + |
| 68 | + data.title3_all[j].size()); |
| 69 | + data.l1_lod.push_back(data.l1_lod.back() + data.l1_all[j].size()); |
| 70 | + } |
| 71 | + } |
| 72 | + batch_iter += batch_size; |
| 73 | + return data; |
| 74 | + } |
| 75 | + void Load(const std::string &path) { |
| 76 | + std::ifstream file(path); |
| 77 | + std::string line; |
| 78 | + int num_lines = 0; |
| 79 | + while (std::getline(file, line)) { |
| 80 | + num_lines++; |
| 81 | + std::vector<std::string> data; |
| 82 | + split(line, '\t', &data); |
| 83 | + // load title1 data |
| 84 | + std::vector<int64_t> title1_data; |
| 85 | + split_to_int64(data[0], ' ', &title1_data); |
| 86 | + // load title2 data |
| 87 | + std::vector<int64_t> title2_data; |
| 88 | + split_to_int64(data[1], ' ', &title2_data); |
| 89 | + // load title3 data |
| 90 | + std::vector<int64_t> title3_data; |
| 91 | + split_to_int64(data[2], ' ', &title3_data); |
| 92 | + // load l1 data |
| 93 | + std::vector<int64_t> l1_data; |
| 94 | + split_to_int64(data[3], ' ', &l1_data); |
| 95 | + title1_all.push_back(std::move(title1_data)); |
| 96 | + title2_all.push_back(std::move(title2_data)); |
| 97 | + title3_all.push_back(std::move(title3_data)); |
| 98 | + l1_all.push_back(std::move(l1_data)); |
| 99 | + } |
| 100 | + num_samples = num_lines; |
| 101 | + } |
| 102 | +}; |
| 103 | + |
| 104 | +void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data, |
| 105 | + int batch_size) { |
| 106 | + PaddleTensor title1_tensor, title2_tensor, title3_tensor, l1_tensor; |
| 107 | + title1_tensor.name = "title1"; |
| 108 | + title2_tensor.name = "title2"; |
| 109 | + title3_tensor.name = "title3"; |
| 110 | + l1_tensor.name = "l1"; |
| 111 | + auto one_batch = data->NextBatch(); |
| 112 | + int title1_size = one_batch.title1_lod[one_batch.title1_lod.size() - 1]; |
| 113 | + title1_tensor.shape.assign({title1_size, 1}); |
| 114 | + title1_tensor.lod.assign({one_batch.title1_lod}); |
| 115 | + int title2_size = one_batch.title2_lod[one_batch.title2_lod.size() - 1]; |
| 116 | + title2_tensor.shape.assign({title2_size, 1}); |
| 117 | + title2_tensor.lod.assign({one_batch.title2_lod}); |
| 118 | + int title3_size = one_batch.title3_lod[one_batch.title3_lod.size() - 1]; |
| 119 | + title3_tensor.shape.assign({title3_size, 1}); |
| 120 | + title3_tensor.lod.assign({one_batch.title3_lod}); |
| 121 | + int l1_size = one_batch.l1_lod[one_batch.l1_lod.size() - 1]; |
| 122 | + l1_tensor.shape.assign({l1_size, 1}); |
| 123 | + l1_tensor.lod.assign({one_batch.l1_lod}); |
| 124 | + |
| 125 | + // assign data |
| 126 | + TensorAssignData<int64_t>(&title1_tensor, one_batch.title1); |
| 127 | + TensorAssignData<int64_t>(&title2_tensor, one_batch.title2); |
| 128 | + TensorAssignData<int64_t>(&title3_tensor, one_batch.title3); |
| 129 | + TensorAssignData<int64_t>(&l1_tensor, one_batch.l1); |
| 130 | + // Set inputs. |
| 131 | + input_slots->assign({title1_tensor, title2_tensor, title3_tensor, l1_tensor}); |
| 132 | + for (auto &tensor : *input_slots) { |
| 133 | + tensor.dtype = PaddleDType::INT64; |
| 134 | + } |
| 135 | +} |
| 136 | + |
| 137 | +void SetConfig(AnalysisConfig *cfg) { |
| 138 | + cfg->model_dir = FLAGS_infer_model; |
| 139 | + cfg->use_gpu = false; |
| 140 | + cfg->device = 0; |
| 141 | + cfg->specify_input_name = true; |
| 142 | + cfg->enable_ir_optim = true; |
| 143 | +} |
| 144 | + |
| 145 | +void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) { |
| 146 | + DataRecord data(FLAGS_infer_data, FLAGS_batch_size); |
| 147 | + std::vector<PaddleTensor> input_slots; |
| 148 | + int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1; |
| 149 | + LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size; |
| 150 | + for (int bid = 0; bid < epoch; ++bid) { |
| 151 | + PrepareInputs(&input_slots, &data, FLAGS_batch_size); |
| 152 | + (*inputs).emplace_back(input_slots); |
| 153 | + } |
| 154 | +} |
| 155 | + |
| 156 | +// Easy for profiling independently. |
| 157 | +TEST(Analyzer_seq_conv1, profile) { |
| 158 | + AnalysisConfig cfg; |
| 159 | + SetConfig(&cfg); |
| 160 | + std::vector<PaddleTensor> outputs; |
| 161 | + |
| 162 | + std::vector<std::vector<PaddleTensor>> input_slots_all; |
| 163 | + SetInput(&input_slots_all); |
| 164 | + TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads); |
| 165 | + |
| 166 | + if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) { |
| 167 | + // the first inference result |
| 168 | + PADDLE_ENFORCE_EQ(outputs.size(), 1UL); |
| 169 | + size_t size = GetSize(outputs[0]); |
| 170 | + PADDLE_ENFORCE_GT(size, 0); |
| 171 | + float *result = static_cast<float *>(outputs[0].data.data()); |
| 172 | + // output is probability, which is in (0, 1). |
| 173 | + for (size_t i = 0; i < size; i++) { |
| 174 | + EXPECT_GT(result[i], 0); |
| 175 | + EXPECT_LT(result[i], 1); |
| 176 | + } |
| 177 | + } |
| 178 | +} |
| 179 | + |
| 180 | +// Check the fuse status |
| 181 | +TEST(Analyzer_seq_conv1, fuse_statis) { |
| 182 | + AnalysisConfig cfg; |
| 183 | + SetConfig(&cfg); |
| 184 | + int num_ops; |
| 185 | + auto fuse_statis = GetFuseStatis(cfg, &num_ops); |
| 186 | +} |
| 187 | + |
| 188 | +// Compare result of NativeConfig and AnalysisConfig |
| 189 | +TEST(Analyzer_seq_conv1, compare) { |
| 190 | + AnalysisConfig cfg; |
| 191 | + SetConfig(&cfg); |
| 192 | + |
| 193 | + std::vector<std::vector<PaddleTensor>> input_slots_all; |
| 194 | + SetInput(&input_slots_all); |
| 195 | + CompareNativeAndAnalysis(cfg, input_slots_all); |
| 196 | +} |
| 197 | + |
| 198 | +} // namespace inference |
| 199 | +} // namespace paddle |
0 commit comments