Skip to content

Commit fb43c6b

Browse files
authored
Fix attribute name in new API (#10947)
1 parent c79ec9f commit fb43c6b

File tree

11 files changed

+90
-83
lines changed

11 files changed

+90
-83
lines changed

python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@ def linear():
4848
return avg_loss
4949

5050

51-
def train(use_cuda, train_program, save_dirname):
51+
def train(use_cuda, train_program, params_dirname):
5252
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
5353

5454
trainer = fluid.Trainer(
@@ -68,8 +68,8 @@ def event_handler(event):
6868
['15.343549569447836']
6969
...
7070
'''
71-
if save_dirname is not None:
72-
trainer.save_params(save_dirname)
71+
if params_dirname is not None:
72+
trainer.save_params(params_dirname)
7373
trainer.stop()
7474

7575
trainer.train(
@@ -80,13 +80,13 @@ def event_handler(event):
8080

8181

8282
# infer
83-
def infer(use_cuda, inference_program, save_dirname=None):
84-
if save_dirname is None:
83+
def infer(use_cuda, inference_program, params_dirname=None):
84+
if params_dirname is None:
8585
return
8686

8787
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
8888
inferencer = fluid.Inferencer(
89-
infer_func=inference_program, param_path=save_dirname, place=place)
89+
infer_func=inference_program, param_path=params_dirname, place=place)
9090

9191
batch_size = 10
9292
tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
@@ -100,10 +100,10 @@ def main(use_cuda):
100100
return
101101

102102
# Directory for saving the trained model
103-
save_dirname = "fit_a_line.inference.model"
103+
params_dirname = "fit_a_line.inference.model"
104104

105-
train(use_cuda, linear, save_dirname)
106-
infer(use_cuda, inference_program, save_dirname)
105+
train(use_cuda, linear, params_dirname)
106+
infer(use_cuda, inference_program, params_dirname)
107107

108108

109109
class TestFitALine(unittest.TestCase):

python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py

Lines changed: 9 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -85,7 +85,7 @@ def train_network():
8585
return [avg_cost, accuracy]
8686

8787

88-
def train(use_cuda, train_program, save_dirname):
88+
def train(use_cuda, train_program, params_dirname):
8989
BATCH_SIZE = 128
9090
EPOCH_NUM = 1
9191

@@ -105,8 +105,8 @@ def event_handler(event):
105105
print('Loss {0:2.2}, Acc {1:2.2}'.format(avg_cost, accuracy))
106106

107107
if accuracy > 0.01: # Low threshold for speeding up CI
108-
if save_dirname is not None:
109-
trainer.save_params(save_dirname)
108+
if params_dirname is not None:
109+
trainer.save_params(params_dirname)
110110
return
111111

112112
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
@@ -122,10 +122,10 @@ def event_handler(event):
122122
feed_order=['pixel', 'label'])
123123

124124

125-
def infer(use_cuda, inference_program, save_dirname=None):
125+
def infer(use_cuda, inference_program, params_dirname=None):
126126
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
127127
inferencer = fluid.Inferencer(
128-
infer_func=inference_program, param_path=save_dirname, place=place)
128+
infer_func=inference_program, param_path=params_dirname, place=place)
129129

130130
# The input's dimension of conv should be 4-D or 5-D.
131131
# Use normilized image pixels as input data, which should be in the range
@@ -142,12 +142,14 @@ def main(use_cuda):
142142
save_path = "image_classification_resnet.inference.model"
143143

144144
train(
145-
use_cuda=use_cuda, train_program=train_network, save_dirname=save_path)
145+
use_cuda=use_cuda,
146+
train_program=train_network,
147+
params_dirname=save_path)
146148

147149
infer(
148150
use_cuda=use_cuda,
149151
inference_program=inference_network,
150-
save_dirname=save_path)
152+
params_dirname=save_path)
151153

152154

153155
if __name__ == '__main__':

python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py

Lines changed: 9 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@ def train_network():
6464
return [avg_cost, accuracy]
6565

6666

67-
def train(use_cuda, train_program, save_dirname):
67+
def train(use_cuda, train_program, params_dirname):
6868
BATCH_SIZE = 128
6969
train_reader = paddle.batch(
7070
paddle.reader.shuffle(
@@ -82,8 +82,8 @@ def event_handler(event):
8282
print('Loss {0:2.2}, Acc {1:2.2}'.format(avg_cost, accuracy))
8383

8484
if accuracy > 0.01: # Low threshold for speeding up CI
85-
if save_dirname is not None:
86-
trainer.save_params(save_dirname)
85+
if params_dirname is not None:
86+
trainer.save_params(params_dirname)
8787
return
8888

8989
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
@@ -99,10 +99,10 @@ def event_handler(event):
9999
feed_order=['pixel', 'label'])
100100

101101

102-
def infer(use_cuda, inference_program, save_dirname=None):
102+
def infer(use_cuda, inference_program, params_dirname=None):
103103
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
104104
inferencer = fluid.Inferencer(
105-
infer_func=inference_program, param_path=save_dirname, place=place)
105+
infer_func=inference_program, param_path=params_dirname, place=place)
106106

107107
# The input's dimension of conv should be 4-D or 5-D.
108108
# Use normilized image pixels as input data, which should be in the range
@@ -119,12 +119,14 @@ def main(use_cuda):
119119
save_path = "image_classification_vgg.inference.model"
120120

121121
train(
122-
use_cuda=use_cuda, train_program=train_network, save_dirname=save_path)
122+
use_cuda=use_cuda,
123+
train_program=train_network,
124+
params_dirname=save_path)
123125

124126
infer(
125127
use_cuda=use_cuda,
126128
inference_program=inference_network,
127-
save_dirname=save_path)
129+
params_dirname=save_path)
128130

129131

130132
if __name__ == '__main__':

python/paddle/fluid/tests/book/high-level-api/label_semantic_roles/test_label_semantic_roles_newapi.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -141,7 +141,7 @@ def train_program():
141141
return [avg_cost]
142142

143143

144-
def train(use_cuda, train_program, save_path):
144+
def train(use_cuda, train_program, params_dirname):
145145
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
146146
optimizer = fluid.optimizer.SGD(learning_rate=0.01)
147147

@@ -172,7 +172,7 @@ def event_handler(event):
172172
print("avg_cost: %s" % avg_cost)
173173

174174
if float(avg_cost) < 100.0: # Large value to increase CI speed
175-
trainer.save_params(save_path)
175+
trainer.save_params(params_dirname)
176176
else:
177177
print('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1,
178178
float(avg_cost)))
@@ -183,7 +183,7 @@ def event_handler(event):
183183
print("Step {0}, Epoch {1} Metrics {2}".format(
184184
event.step, event.epoch, map(np.array, event.metrics)))
185185
if event.step == 1: # Run 2 iterations to speed CI
186-
trainer.save_params(save_path)
186+
trainer.save_params(params_dirname)
187187
trainer.stop()
188188

189189
train_reader = paddle.batch(
@@ -197,10 +197,10 @@ def event_handler(event):
197197
feed_order=feed_order)
198198

199199

200-
def infer(use_cuda, inference_program, save_path):
200+
def infer(use_cuda, inference_program, params_dirname):
201201
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
202202
inferencer = fluid.Inferencer(
203-
inference_program, param_path=save_path, place=place)
203+
inference_program, param_path=params_dirname, place=place)
204204

205205
# Setup inputs by creating LoDTensors to represent sequences of words.
206206
# Here each word is the basic element of these LoDTensors and the shape of
@@ -251,9 +251,9 @@ def infer(use_cuda, inference_program, save_path):
251251
def main(use_cuda):
252252
if use_cuda and not fluid.core.is_compiled_with_cuda():
253253
return
254-
save_path = "label_semantic_roles.inference.model"
255-
train(use_cuda, train_program, save_path)
256-
infer(use_cuda, inference_program, save_path)
254+
params_dirname = "label_semantic_roles.inference.model"
255+
train(use_cuda, train_program, params_dirname)
256+
infer(use_cuda, inference_program, params_dirname)
257257

258258

259259
if __name__ == '__main__':

python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ def train_program():
5757
return [avg_cost, acc]
5858

5959

60-
def train(use_cuda, train_program, save_dirname):
60+
def train(use_cuda, train_program, params_dirname):
6161
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
6262
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
6363

@@ -78,7 +78,7 @@ def event_handler(event):
7878
print("acc : %s" % acc)
7979

8080
if acc > 0.2: # Smaller value to increase CI speed
81-
trainer.save_params(save_dirname)
81+
trainer.save_params(params_dirname)
8282
else:
8383
print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
8484
event.epoch + 1, avg_cost, acc))
@@ -100,11 +100,11 @@ def event_handler(event):
100100
feed_order=['img', 'label'])
101101

102102

103-
def infer(use_cuda, inference_program, save_dirname=None):
103+
def infer(use_cuda, inference_program, params_dirname=None):
104104
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
105105

106106
inferencer = fluid.Inferencer(
107-
infer_func=inference_program, param_path=save_dirname, place=place)
107+
infer_func=inference_program, param_path=params_dirname, place=place)
108108

109109
batch_size = 1
110110
tensor_img = numpy.random.uniform(-1.0, 1.0,
@@ -116,17 +116,17 @@ def infer(use_cuda, inference_program, save_dirname=None):
116116

117117

118118
def main(use_cuda):
119-
save_dirname = "recognize_digits_conv.inference.model"
119+
params_dirname = "recognize_digits_conv.inference.model"
120120

121121
# call train() with is_local argument to run distributed train
122122
train(
123123
use_cuda=use_cuda,
124124
train_program=train_program,
125-
save_dirname=save_dirname)
125+
params_dirname=params_dirname)
126126
infer(
127127
use_cuda=use_cuda,
128128
inference_program=inference_program,
129-
save_dirname=save_dirname)
129+
params_dirname=params_dirname)
130130

131131

132132
if __name__ == '__main__':

python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ def train_program():
4444
return [avg_cost, acc]
4545

4646

47-
def train(use_cuda, train_program, save_dirname):
47+
def train(use_cuda, train_program, params_dirname):
4848
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
4949
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
5050

@@ -62,7 +62,7 @@ def event_handler(event):
6262
print("acc : %s" % acc)
6363

6464
if acc > 0.2: # Smaller value to increase CI speed
65-
trainer.save_params(save_dirname)
65+
trainer.save_params(params_dirname)
6666
else:
6767
print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
6868
event.epoch + 1, avg_cost, acc))
@@ -81,11 +81,11 @@ def event_handler(event):
8181
feed_order=['img', 'label'])
8282

8383

84-
def infer(use_cuda, inference_program, save_dirname=None):
84+
def infer(use_cuda, inference_program, params_dirname=None):
8585
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
8686

8787
inferencer = fluid.Inferencer(
88-
infer_func=inference_program, param_path=save_dirname, place=place)
88+
infer_func=inference_program, param_path=params_dirname, place=place)
8989

9090
batch_size = 1
9191
tensor_img = numpy.random.uniform(-1.0, 1.0,
@@ -97,17 +97,17 @@ def infer(use_cuda, inference_program, save_dirname=None):
9797

9898

9999
def main(use_cuda):
100-
save_dirname = "recognize_digits_mlp.inference.model"
100+
params_dirname = "recognize_digits_mlp.inference.model"
101101

102102
# call train() with is_local argument to run distributed train
103103
train(
104104
use_cuda=use_cuda,
105105
train_program=train_program,
106-
save_dirname=save_dirname)
106+
params_dirname=params_dirname)
107107
infer(
108108
use_cuda=use_cuda,
109109
inference_program=inference_program,
110-
save_dirname=save_dirname)
110+
params_dirname=params_dirname)
111111

112112

113113
if __name__ == '__main__':

python/paddle/fluid/tests/book/high-level-api/recommender_system/test_recommender_system_newapi.py

Lines changed: 10 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -155,7 +155,7 @@ def train_program():
155155
return [avg_cost, scale_infer]
156156

157157

158-
def train(use_cuda, train_program, save_path):
158+
def train(use_cuda, train_program, params_dirname):
159159
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
160160
optimizer = fluid.optimizer.SGD(learning_rate=0.2)
161161

@@ -180,7 +180,7 @@ def event_handler(event):
180180
print("avg_cost: %s" % avg_cost)
181181

182182
if float(avg_cost) < 4: # Smaller value to increase CI speed
183-
trainer.save_params(save_path)
183+
trainer.save_params(params_dirname)
184184
trainer.stop()
185185
else:
186186
print('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1,
@@ -200,10 +200,10 @@ def event_handler(event):
200200
feed_order=feed_order)
201201

202202

203-
def infer(use_cuda, inference_program, save_path):
203+
def infer(use_cuda, inference_program, params_dirname):
204204
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
205205
inferencer = fluid.Inferencer(
206-
inference_program, param_path=save_path, place=place)
206+
inference_program, param_path=params_dirname, place=place)
207207

208208
# Use the first data from paddle.dataset.movielens.test() as input.
209209
# Use create_lod_tensor(data, lod, place) API to generate LoD Tensor,
@@ -240,12 +240,15 @@ def infer(use_cuda, inference_program, save_path):
240240
def main(use_cuda):
241241
if use_cuda and not fluid.core.is_compiled_with_cuda():
242242
return
243-
save_path = "recommender_system.inference.model"
244-
train(use_cuda=use_cuda, train_program=train_program, save_path=save_path)
243+
params_dirname = "recommender_system.inference.model"
244+
train(
245+
use_cuda=use_cuda,
246+
train_program=train_program,
247+
params_dirname=params_dirname)
245248
infer(
246249
use_cuda=use_cuda,
247250
inference_program=inference_program,
248-
save_path=save_path)
251+
params_dirname=params_dirname)
249252

250253

251254
if __name__ == '__main__':

0 commit comments

Comments
 (0)