|
| 1 | +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +from __future__ import print_function |
| 16 | + |
| 17 | +import unittest |
| 18 | +import numpy as np |
| 19 | +from op_test import OpTest |
| 20 | +from test_lstm_op import lstm, ACTIVATION |
| 21 | + |
| 22 | + |
| 23 | +def fc(x, w, b): |
| 24 | + return np.dot(x, w) + b |
| 25 | + |
| 26 | + |
| 27 | +def fused_embedded_fc_lstm( |
| 28 | + ids, # T x 1 |
| 29 | + lod, # 1 x N |
| 30 | + embeddings=None, # Dict_size x M |
| 31 | + wx=None, # M x 4D |
| 32 | + bx=None, # 1 x 4D |
| 33 | + h0=None, # N x D |
| 34 | + c0=None, # N x D |
| 35 | + w_h=None, # D x 4D |
| 36 | + w_b=None, # 1 x 4D |
| 37 | + w_c=None, # 1 x 3D |
| 38 | + is_reverse=False, |
| 39 | + act_gate=None, |
| 40 | + act_cell=None, |
| 41 | + act_cand=None): |
| 42 | + # Make a lookup for embeddings and pass result into lstm reference |
| 43 | + T = ids.shape[0] |
| 44 | + M = embeddings.shape[1] |
| 45 | + x = embeddings[ids].reshape([T, M]) |
| 46 | + return lstm( |
| 47 | + fc(x, wx, bx), lod, h0, c0, w_h, w_b, w_c, is_reverse, act_gate, |
| 48 | + act_cell, act_cand) |
| 49 | + |
| 50 | + |
| 51 | +class TestFusionLSTMOp(OpTest): |
| 52 | + def set_conf(self): |
| 53 | + pass |
| 54 | + |
| 55 | + def setUp(self): |
| 56 | + self.op_type = 'fused_embedding_fc_lstm' |
| 57 | + self.lod = [[2, 3, 5, 4]] |
| 58 | + self.M = 8 # Embedding size |
| 59 | + self.D = 16 # Hidden size |
| 60 | + self.dict_size = 18 |
| 61 | + self.has_initial_state = False |
| 62 | + self.use_peepholes = False |
| 63 | + self.is_reverse = False |
| 64 | + self.act_gate = 'sigmoid' |
| 65 | + self.act_cell = 'tanh' |
| 66 | + self.act_cand = 'tanh' |
| 67 | + self.set_conf() |
| 68 | + |
| 69 | + T = sum(self.lod[0]) |
| 70 | + bs = len(self.lod[0]) |
| 71 | + |
| 72 | + # this is the weight of fc |
| 73 | + wx = np.random.normal(size=(self.M, 4 * self.D)).astype('float32') |
| 74 | + # this is the bias of fc |
| 75 | + bx = np.random.normal(size=(1, 4 * self.D)).astype('float32') |
| 76 | + |
| 77 | + if self.use_peepholes: |
| 78 | + b = np.random.normal(size=(1, 7 * self.D)).astype('float32') |
| 79 | + else: |
| 80 | + b = np.random.normal(size=(1, 4 * self.D)).astype('float32') |
| 81 | + w_b = np.copy(b[:, 0:4 * self.D]) |
| 82 | + w_c = b[:, 4 * self.D:] if self.use_peepholes else None |
| 83 | + |
| 84 | + # low is 0 , high is voc_size - 1 |
| 85 | + ids = np.random.randint( |
| 86 | + low=0, high=self.dict_size - 1, size=(T, 1)).astype("int64") |
| 87 | + # embeddings as they were trained , so each entry is of M size |
| 88 | + embeddings = np.random.random( |
| 89 | + (self.dict_size, self.M)).astype("float32") |
| 90 | + |
| 91 | + # multiply embeddings via Weights |
| 92 | + fc_embeddings = np.dot(embeddings, wx) |
| 93 | + |
| 94 | + # bias should be manually added into the bias of this fused embedding fc LSTM |
| 95 | + b[0, 0:4 * self.D] += bx[0, :] |
| 96 | + combined_biases = b[:, 0:4 * self.D] |
| 97 | + # So let broadcast it , so they can be added |
| 98 | + ones = np.ones([self.dict_size, 1]) |
| 99 | + broadcasted_biases = np.dot(ones, combined_biases) |
| 100 | + # Sum biases with Wx*embeddings |
| 101 | + fc_embeddings += broadcasted_biases |
| 102 | + |
| 103 | + if self.has_initial_state: |
| 104 | + h0 = np.random.normal(size=(bs, self.D)).astype('float32') |
| 105 | + c0 = np.random.normal(size=(bs, self.D)).astype('float32') |
| 106 | + else: |
| 107 | + h0 = np.zeros((bs, self.D)).astype('float32') |
| 108 | + c0 = np.zeros((bs, self.D)).astype('float32') |
| 109 | + |
| 110 | + wh = np.random.normal(size=(self.D, 4 * self.D)).astype('float32') |
| 111 | + |
| 112 | + h, c = fused_embedded_fc_lstm( |
| 113 | + ids, self.lod, embeddings, wx, bx, h0, c0, wh, w_b, w_c, |
| 114 | + self.is_reverse, ACTIVATION[self.act_gate], |
| 115 | + ACTIVATION[self.act_cell], ACTIVATION[self.act_cand]) |
| 116 | + |
| 117 | + self.inputs = { |
| 118 | + 'Ids': (ids, self.lod), |
| 119 | + 'Embeddings': fc_embeddings, |
| 120 | + 'WeightH': wh, |
| 121 | + 'Bias': b |
| 122 | + } |
| 123 | + |
| 124 | + if self.has_initial_state: |
| 125 | + self.inputs['H0'] = h0 |
| 126 | + self.inputs['C0'] = c0 |
| 127 | + |
| 128 | + self.outputs = { |
| 129 | + 'Hidden': (h, self.lod), |
| 130 | + 'Cell': (c, self.lod), |
| 131 | + } |
| 132 | + self.attrs = { |
| 133 | + 'use_peepholes': self.use_peepholes, |
| 134 | + 'is_reverse': self.is_reverse, |
| 135 | + 'gate_activation': self.act_gate, |
| 136 | + 'cell_activation': self.act_cell, |
| 137 | + 'candidate_activation': self.act_cand |
| 138 | + } |
| 139 | + |
| 140 | + def test_check_output(self): |
| 141 | + for use_seq in {True, False}: |
| 142 | + self.attrs['use_seq'] = use_seq |
| 143 | + self.check_output() |
| 144 | + |
| 145 | + |
| 146 | +class TestFusionLSTMOpInit(TestFusionLSTMOp): |
| 147 | + def set_conf(self): |
| 148 | + self.has_initial_state = True |
| 149 | + |
| 150 | + |
| 151 | +class TestFusionLSTMOpReverse(TestFusionLSTMOp): |
| 152 | + def set_conf(self): |
| 153 | + self.is_reverse = True |
| 154 | + |
| 155 | + |
| 156 | +class TestFusionLSTMOpInitReverse(TestFusionLSTMOp): |
| 157 | + def set_conf(self): |
| 158 | + self.has_initial_state = True |
| 159 | + self.is_reverse = True |
| 160 | + |
| 161 | + |
| 162 | +class TestFusionLSTMOpMD1(TestFusionLSTMOp): |
| 163 | + def set_conf(self): |
| 164 | + self.M = 36 |
| 165 | + self.D = 8 |
| 166 | + |
| 167 | + |
| 168 | +class TestFusionLSTMOpMD2(TestFusionLSTMOp): |
| 169 | + def set_conf(self): |
| 170 | + self.M = 8 |
| 171 | + self.D = 8 |
| 172 | + |
| 173 | + |
| 174 | +class TestFusionLSTMOpMD3(TestFusionLSTMOp): |
| 175 | + def set_conf(self): |
| 176 | + self.M = 15 |
| 177 | + self.D = 3 |
| 178 | + |
| 179 | + |
| 180 | +class TestFusionLSTMOpBS1(TestFusionLSTMOp): |
| 181 | + def set_conf(self): |
| 182 | + self.lod = [[3]] |
| 183 | + self.D = 16 |
| 184 | + |
| 185 | + |
| 186 | +class TestFusionLSTMOpPeepholes(TestFusionLSTMOp): |
| 187 | + def set_conf(self): |
| 188 | + self.use_peepholes = True |
| 189 | + |
| 190 | + |
| 191 | +class TestFusionLSTMOpPeepholesInit(TestFusionLSTMOp): |
| 192 | + def set_conf(self): |
| 193 | + self.use_peepholes = True |
| 194 | + self.has_initial_state = True |
| 195 | + |
| 196 | + |
| 197 | +class TestFusionLSTMOpPeepholesReverse(TestFusionLSTMOp): |
| 198 | + def set_conf(self): |
| 199 | + self.use_peepholes = True |
| 200 | + self.is_reverse = True |
| 201 | + |
| 202 | + |
| 203 | +class TestFusionLSTMOpPeepholesInitReverse(TestFusionLSTMOp): |
| 204 | + def set_conf(self): |
| 205 | + self.use_peepholes = True |
| 206 | + self.has_initial_state = True |
| 207 | + self.is_reverse = True |
| 208 | + |
| 209 | + |
| 210 | +class TestFusionLSTMOpPeepholesBS1(TestFusionLSTMOp): |
| 211 | + def set_conf(self): |
| 212 | + self.use_peepholes = True |
| 213 | + self.lod = [[2]] |
| 214 | + self.D = 8 |
| 215 | + |
| 216 | + |
| 217 | +if __name__ == '__main__': |
| 218 | + unittest.main() |
0 commit comments