|
13 | 13 | # See the License for the specific language governing permissions and
|
14 | 14 | # limitations under the License.
|
15 | 15 |
|
16 |
| -#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later. |
| 16 | +from paddle.trainer_config_helpers import * |
17 | 17 |
|
18 |
| -TrainData( |
19 |
| - SimpleData( |
20 |
| - files = "trainer/tests/sample_filelist.txt", |
21 |
| - feat_dim = 3, |
22 |
| - context_len = 0, |
23 |
| - buffer_capacity = 1000000, |
24 |
| - ) |
25 |
| -) |
| 18 | +TrainData(SimpleData( |
| 19 | + files = "trainer/tests/sample_filelist.txt", |
| 20 | + feat_dim = 3, |
| 21 | + context_len = 0, |
| 22 | + buffer_capacity = 1000000)) |
26 | 23 |
|
27 |
| -TestData( |
28 |
| - SimpleData( |
29 |
| - files = "trainer/tests/sample_filelist.txt", |
30 |
| - feat_dim = 3, |
31 |
| - context_len = 0, |
32 |
| - buffer_capacity = 1000000, |
33 |
| - ) |
34 |
| -) |
| 24 | +TestData(SimpleData( |
| 25 | + files = "trainer/tests/sample_filelist.txt", |
| 26 | + feat_dim = 3, |
| 27 | + context_len = 0, |
| 28 | + buffer_capacity = 1000000)) |
35 | 29 |
|
36 |
| -Settings( |
37 |
| - algorithm = "sgd", |
38 |
| - num_batches_per_send_parameter = 1, |
39 |
| - num_batches_per_get_parameter = 1, |
40 |
| - batch_size = 100, |
41 |
| - learning_rate = 0.001, |
42 |
| - learning_rate_decay_a = 1e-5, |
43 |
| - learning_rate_decay_b = 0.5, |
44 |
| -) |
| 30 | +settings(batch_size = 100) |
45 | 31 |
|
46 |
| -default_initial_std(0.2) |
47 | 32 | # Output layer, label layer, cost layer, preferably set to the same environment.
|
48 | 33 | output_device = 0
|
49 | 34 |
|
50 |
| -model_type("nn") |
51 |
| - |
52 | 35 | # Input Layer does not need to specify the device number.
|
53 |
| -Layer( |
54 |
| - name = "input", |
55 |
| - type = "data", |
56 |
| - size = 3, |
57 |
| -) |
| 36 | +data = data_layer(name='input', size=3) |
58 | 37 |
|
59 | 38 | # Calculate in the CPU.
|
60 |
| -Layer( |
61 |
| - name = "layer1_1", |
62 |
| - type = "fc", |
63 |
| - size = 5, |
64 |
| - active_type = "sigmoid", |
65 |
| - device = -1, |
66 |
| - inputs = "input", |
67 |
| -) |
| 39 | +fc1 = fc_layer(input=data, size=5, |
| 40 | + bias_attr=True, |
| 41 | + layer_attr=ExtraAttr(device=-1), |
| 42 | + act=SigmoidActivation()) |
68 | 43 |
|
69 | 44 | # Calculate in the GPU 0.
|
70 |
| -Layer( |
71 |
| - name = "layer2_1", |
72 |
| - type = "fc", |
73 |
| - size = 10, |
74 |
| - active_type = "sigmoid", |
75 |
| - device = 0, |
76 |
| - inputs = "layer1_1", |
77 |
| -) |
| 45 | +fc2 = fc_layer(input=fc1, size=10, |
| 46 | + bias_attr=True, |
| 47 | + layer_attr=ExtraAttr(device=0), |
| 48 | + act=SigmoidActivation()) |
78 | 49 |
|
79 | 50 | # Calculate in the GPU 1.
|
80 |
| -Layer( |
81 |
| - name = "layer2_2", |
82 |
| - type = "fc", |
83 |
| - size = 10, |
84 |
| - active_type = "sigmoid", |
85 |
| - device = 1, |
86 |
| - inputs = "layer1_1", |
87 |
| -) |
| 51 | +fc3 = fc_layer(input=fc1, size=10, |
| 52 | + bias_attr=True, |
| 53 | + layer_attr=ExtraAttr(device=1), |
| 54 | + act=SigmoidActivation()) |
88 | 55 |
|
89 | 56 | # Calculate in the GPU 0.
|
90 |
| -Layer( |
91 |
| - name = "layer3_1", |
92 |
| - type = "fc", |
93 |
| - size = 10, |
94 |
| - device = 0, |
95 |
| - active_type = "sigmoid", |
96 |
| - inputs = ["layer2_1", "layer2_2"], |
97 |
| -) |
| 57 | +fc4 = fc_layer(input=[fc2,fc3], size=10, |
| 58 | + bias_attr=True, |
| 59 | + layer_attr=ExtraAttr(device=0), |
| 60 | + act=SigmoidActivation()) |
98 | 61 |
|
99 | 62 | # Calculate in the GPU 1.
|
100 |
| -Layer( |
101 |
| - name = "layer3_2", |
102 |
| - type = "fc", |
103 |
| - size = 10, |
104 |
| - device = 1, |
105 |
| - active_type = "sigmoid", |
106 |
| - inputs = ["layer2_1", "layer2_2"], |
107 |
| -) |
108 |
| - |
| 63 | +fc5 = fc_layer(input=[fc2,fc3], size=10, |
| 64 | + bias_attr=True, |
| 65 | + layer_attr=ExtraAttr(device=1), |
| 66 | + act=SigmoidActivation()) |
109 | 67 |
|
110 |
| -Layer( |
111 |
| - name = "output", |
112 |
| - type = "fc", |
113 |
| - size = 10, |
114 |
| - device = output_device, |
115 |
| - active_type = "sigmoid", |
116 |
| - inputs = ["layer3_1", "layer3_2"], |
117 |
| -) |
| 68 | +output = fc_layer(input=[fc4,fc5], size=10, |
| 69 | + bias_attr=True, |
| 70 | + layer_attr=ExtraAttr(device=output_device), |
| 71 | + act=SoftmaxActivation()) |
118 | 72 |
|
119 | 73 | if get_config_arg('with_cost', bool, True):
|
120 | 74 | # This is for training the neural network.
|
121 | 75 | # We need to have another data layer for label
|
122 | 76 | # and a layer for calculating cost
|
123 |
| - Layer( |
124 |
| - name = "label", |
125 |
| - type = "data", |
126 |
| - device = output_device, |
127 |
| - size = 1, |
128 |
| - ) |
129 |
| - |
130 |
| - Layer( |
131 |
| - name = "cost", |
132 |
| - type = "multi-class-cross-entropy", |
133 |
| - device = output_device, |
134 |
| - inputs = ["output", "label"], |
135 |
| - ) |
136 |
| - |
137 |
| - Evaluator( |
138 |
| - name = "error", |
139 |
| - type = "classification_error", |
140 |
| - inputs = ["output", "label"]) |
141 |
| - |
142 |
| - Inputs("input", "label") |
143 |
| - Outputs("cost") |
144 |
| - |
| 77 | + lbl = data_layer(name='label', size=1, |
| 78 | + layer_attr=ExtraAttr(device=output_device)) |
| 79 | + |
| 80 | + outputs(classification_cost(input=output, |
| 81 | + label=lbl, |
| 82 | + layer_attr=ExtraAttr(device=output_device))) |
145 | 83 | else:
|
146 | 84 | # This is for prediction where we don't have label
|
147 | 85 | # and don't need to calculate cost
|
148 |
| - Inputs("input") |
149 |
| - Outputs("output") |
| 86 | + outputs(output) |
0 commit comments