diff --git a/paddle/gserver/gradientmachines/GradientMachine.h b/paddle/gserver/gradientmachines/GradientMachine.h index 579eca71d4cdd2..26ce340aa69b4a 100644 --- a/paddle/gserver/gradientmachines/GradientMachine.h +++ b/paddle/gserver/gradientmachines/GradientMachine.h @@ -181,12 +181,12 @@ class GradientMachine { /** * Create an evaluator which can be used for eval() */ - virtual Evaluator* makeEvaluator() = 0; + virtual Evaluator* makeEvaluator() const = 0; /** * evaluate using the given evaluator */ - virtual void eval(Evaluator* evaluator) = 0; + virtual void eval(Evaluator* evaluator) const = 0; std::vector& getParameters() { return parameters_; } diff --git a/paddle/gserver/gradientmachines/MultiGradientMachine.cpp b/paddle/gserver/gradientmachines/MultiGradientMachine.cpp index 88c098b3559d8d..bd51507a291a18 100644 --- a/paddle/gserver/gradientmachines/MultiGradientMachine.cpp +++ b/paddle/gserver/gradientmachines/MultiGradientMachine.cpp @@ -327,11 +327,11 @@ void MultiGradientMachine::finish() { } } -Evaluator* MultiGradientMachine::makeEvaluator() { +Evaluator* MultiGradientMachine::makeEvaluator() const { return threads_[0]->getGradientMachine()->makeEvaluator(); } -void MultiGradientMachine::eval(Evaluator* evaluator) { +void MultiGradientMachine::eval(Evaluator* evaluator) const { for (auto& thread : threads_) { SetDevice device(thread->getDeviceId()); thread->getGradientMachine()->eval(evaluator); diff --git a/paddle/gserver/gradientmachines/MultiGradientMachine.h b/paddle/gserver/gradientmachines/MultiGradientMachine.h index 5f9855c4be869a..9be15ef4bcf34f 100644 --- a/paddle/gserver/gradientmachines/MultiGradientMachine.h +++ b/paddle/gserver/gradientmachines/MultiGradientMachine.h @@ -193,9 +193,9 @@ class MultiGradientMachine : public GradientMachine { virtual void finish(); - virtual Evaluator* makeEvaluator(); + virtual Evaluator* makeEvaluator() const; - virtual void eval(Evaluator* evaluator); + virtual void eval(Evaluator* evaluator) const; bool useGpu() const { return useGpu_; } diff --git a/paddle/gserver/gradientmachines/MultiNetwork.cpp b/paddle/gserver/gradientmachines/MultiNetwork.cpp index 6eb3d8db962161..933144b5bd65a4 100644 --- a/paddle/gserver/gradientmachines/MultiNetwork.cpp +++ b/paddle/gserver/gradientmachines/MultiNetwork.cpp @@ -172,7 +172,7 @@ class MultiCombinedEvaluator : public Evaluator { std::vector> evaluators_; }; -Evaluator* MultiNetwork::makeEvaluator() { +Evaluator* MultiNetwork::makeEvaluator() const { MultiCombinedEvaluator* multiCombinedEvaluator = new MultiCombinedEvaluator(); for (size_t i = 0; i < subNetworks_.size(); i++) { std::unique_ptr evaluator(subNetworks_[i]->makeEvaluator()); @@ -181,6 +181,6 @@ Evaluator* MultiNetwork::makeEvaluator() { return multiCombinedEvaluator; } -void MultiNetwork::eval(Evaluator* evaluator) { evaluator->eval(*this); } +void MultiNetwork::eval(Evaluator* evaluator) const { evaluator->eval(*this); } } // namespace paddle diff --git a/paddle/gserver/gradientmachines/MultiNetwork.h b/paddle/gserver/gradientmachines/MultiNetwork.h index 89fbf32b4f90bc..ce024659ec366a 100644 --- a/paddle/gserver/gradientmachines/MultiNetwork.h +++ b/paddle/gserver/gradientmachines/MultiNetwork.h @@ -46,9 +46,9 @@ class MultiNetwork : public NeuralNetwork { virtual void onPassEnd(); - virtual Evaluator* makeEvaluator(); + virtual Evaluator* makeEvaluator() const; - virtual void eval(Evaluator* evaluator); + virtual void eval(Evaluator* evaluator) const; const std::vector>& getSubNetworks() const { return subNetworks_; diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.cpp b/paddle/gserver/gradientmachines/NeuralNetwork.cpp index ee36a87b9d848e..22051e07ee0026 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.cpp +++ b/paddle/gserver/gradientmachines/NeuralNetwork.cpp @@ -348,7 +348,7 @@ class CombinedEvaluator : public Evaluator { std::vector> evaluators_; }; -Evaluator* NeuralNetwork::makeEvaluator() { +Evaluator* NeuralNetwork::makeEvaluator() const { CombinedEvaluator* combinedEvaluator = new CombinedEvaluator(); auto subModelConfig = std::find_if(config_.sub_models().begin(), config_.sub_models().end(), @@ -383,7 +383,7 @@ Evaluator* NeuralNetwork::makeEvaluator() { return combinedEvaluator; } -void NeuralNetwork::eval(Evaluator* evaluator) { evaluator->eval(*this); } +void NeuralNetwork::eval(Evaluator* evaluator) const { evaluator->eval(*this); } void NeuralNetwork::setOutputGrad(const std::vector& args) { CHECK_GE(outputLayers_.size(), args.size()); diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.h b/paddle/gserver/gradientmachines/NeuralNetwork.h index 384ca88f47ffb2..25af4abcf81700 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.h +++ b/paddle/gserver/gradientmachines/NeuralNetwork.h @@ -96,9 +96,9 @@ class NeuralNetwork : public GradientMachine { virtual void onPassEnd(); - virtual Evaluator* makeEvaluator(); + virtual Evaluator* makeEvaluator() const; - virtual void eval(Evaluator* evaluator); + virtual void eval(Evaluator* evaluator) const; virtual void resetState(); virtual void setOutputGrad(const std::vector& args); diff --git a/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp b/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp index 8f68b3d66bd263..a9a9f4f903e305 100644 --- a/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp +++ b/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp @@ -593,7 +593,7 @@ void RecurrentGradientMachine::forwardBackward( LOG(FATAL) << "should not use this function"; } -void RecurrentGradientMachine::eval(Evaluator* evaluator) { +void RecurrentGradientMachine::eval(Evaluator* evaluator) const { // call printers frame by frame for (int i = 0; i < maxSequenceLength_; ++i) { LOG(INFO) << "Recurrent Layer Group eval frame " << i << " begin"; diff --git a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h index db7d8aff6d3150..910ca4376bedea 100644 --- a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h +++ b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h @@ -63,7 +63,7 @@ class RecurrentGradientMachine : public NeuralNetwork { const UpdateCallback& callback); virtual void resetState() {} - virtual void eval(Evaluator* evaluator); + virtual void eval(Evaluator* evaluator) const; const std::vector& getParameterIds() { return parameterIds_; }