|
| 1 | +# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import unittest |
| 16 | + |
| 17 | +import numpy as np |
| 18 | +import torch |
| 19 | +import paddle |
| 20 | +import paddlenlp_ops |
| 21 | + |
| 22 | +from tests.op_test import skip_check_grad_ci |
| 23 | + |
| 24 | +import os |
| 25 | + |
| 26 | +intel_hpus_module_id = os.environ.get("FLAGS_selected_intel_hpus", 0) |
| 27 | + |
| 28 | + |
| 29 | +def index_copy_torch(input, dim, index, source, dtype): |
| 30 | + dtype_map = { |
| 31 | + "float16": torch.float16, |
| 32 | + "float32": torch.float32, |
| 33 | + "float64": torch.float64, |
| 34 | + "int32": torch.int32, |
| 35 | + } |
| 36 | + torch_dtype = dtype_map[dtype] |
| 37 | + input_tensor = torch.tensor(input).clone().detach().to(dtype=torch_dtype) |
| 38 | + index_tensor = torch.tensor(index).clone().detach().to(dtype=torch.int64) |
| 39 | + source_tensor = torch.tensor(source).clone().detach().to(dtype=torch_dtype) |
| 40 | + output = torch.index_copy( |
| 41 | + input=input_tensor, dim=dim, index=index_tensor, source=source_tensor |
| 42 | + ) |
| 43 | + return output |
| 44 | + |
| 45 | + |
| 46 | +@skip_check_grad_ci(reason="index_copy_forward ops not support gradient calculation.") |
| 47 | +class TestIndexCopyOpFP32(unittest.TestCase): |
| 48 | + def setUp(self): |
| 49 | + self.place = paddle.CustomPlace("intel_hpu", int(intel_hpus_module_id)) |
| 50 | + self.init_dtype() |
| 51 | + self.batch_size = 16 |
| 52 | + self.num_heads = 32 |
| 53 | + self.seq_length = 256 |
| 54 | + self.head_dim = 64 |
| 55 | + |
| 56 | + def init_dtype(self): |
| 57 | + self.dtype = "float32" |
| 58 | + |
| 59 | + def check_result(self, torch_res, ops_res): |
| 60 | + if self.dtype == "float32": |
| 61 | + rtol = 1e-5 |
| 62 | + atol = 1e-6 |
| 63 | + elif self.dtype == "float16": |
| 64 | + rtol = 1e-3 |
| 65 | + atol = 1e-4 |
| 66 | + elif self.dtype == "bfloat16": |
| 67 | + rtol = 1e-2 |
| 68 | + atol = 1e-3 |
| 69 | + else: |
| 70 | + self.assertTrue( |
| 71 | + False, |
| 72 | + msg="index_copy input dtype only supports bfloat16, \ |
| 73 | + float16 and float32, but got " |
| 74 | + + self.dtype, |
| 75 | + ) |
| 76 | + np.testing.assert_allclose(torch_res, ops_res, rtol=rtol, atol=atol) |
| 77 | + |
| 78 | + def index_copy_custom(self, input, dim, index, source): |
| 79 | + input_tensor = paddle.to_tensor(input, dtype=self.dtype).clone() |
| 80 | + index_tensor = paddle.to_tensor(index, dtype="int64").clone() |
| 81 | + source_tensor = paddle.to_tensor(source, dtype=self.dtype).clone() |
| 82 | + paddlenlp_ops.index_copy_( |
| 83 | + input=input_tensor, dim=dim, index=index_tensor, source=source_tensor |
| 84 | + ) |
| 85 | + return input_tensor |
| 86 | + |
| 87 | + def prepare_input( |
| 88 | + self, batch_size=16, num_heads=32, seq_length=256, head_dim=64, dim=0, index=0 |
| 89 | + ): |
| 90 | + self.batch_size = batch_size |
| 91 | + self.num_heads = num_heads |
| 92 | + self.seq_length = seq_length |
| 93 | + self.head_dim = head_dim |
| 94 | + |
| 95 | + input = np.full( |
| 96 | + (num_heads, head_dim, seq_length, batch_size), -1, dtype=self.dtype |
| 97 | + ) |
| 98 | + index = [index] |
| 99 | + if dim == 0: |
| 100 | + source = np.full( |
| 101 | + (len(index), head_dim, seq_length, batch_size), 0, dtype=self.dtype |
| 102 | + ) |
| 103 | + elif dim == 1: |
| 104 | + source = np.full( |
| 105 | + (num_heads, len(index), seq_length, batch_size), 0, dtype=self.dtype |
| 106 | + ) |
| 107 | + elif dim == 2: |
| 108 | + source = np.full( |
| 109 | + (num_heads, head_dim, len(index), batch_size), 0, dtype=self.dtype |
| 110 | + ) |
| 111 | + elif dim == 3: |
| 112 | + source = np.full( |
| 113 | + (num_heads, head_dim, seq_length, len(index)), 0, dtype=self.dtype |
| 114 | + ) |
| 115 | + else: |
| 116 | + raise ValueError( |
| 117 | + "Unsupported dimension. Only dim=0, dim=1 and dim=2 are supported." |
| 118 | + ) |
| 119 | + return input, index, source, dim |
| 120 | + |
| 121 | + def test_index_copy_dim0_index0(self): |
| 122 | + input, index, source, dim = self.prepare_input(dim=0, index=0) |
| 123 | + custom_res = self.index_copy_custom(input, dim, index, source) |
| 124 | + torch_res = index_copy_torch(input, dim, index, source, dtype=self.dtype) |
| 125 | + self.check_result(torch_res.numpy(), custom_res) |
| 126 | + |
| 127 | + def test_index_copy_dim0_index1(self): |
| 128 | + input, index, source, dim = self.prepare_input(dim=0, index=1) |
| 129 | + custom_res = self.index_copy_custom(input, dim, index, source) |
| 130 | + torch_res = index_copy_torch(input, dim, index, source, dtype=self.dtype) |
| 131 | + self.check_result(torch_res.numpy(), custom_res) |
| 132 | + |
| 133 | + def test_index_copy_dim0_index_max(self): |
| 134 | + index = max(self.num_heads - 1, 0) |
| 135 | + input, index, source, dim = self.prepare_input(dim=0, index=index) |
| 136 | + custom_res = self.index_copy_custom(input, dim, index, source) |
| 137 | + torch_res = index_copy_torch(input, dim, index, source, dtype=self.dtype) |
| 138 | + self.check_result(torch_res.numpy(), custom_res) |
| 139 | + |
| 140 | + def test_index_copy_dim1_index0(self): |
| 141 | + input, index, source, dim = self.prepare_input(dim=1, index=0) |
| 142 | + custom_res = self.index_copy_custom(input, dim, index, source) |
| 143 | + torch_res = index_copy_torch(input, dim, index, source, dtype=self.dtype) |
| 144 | + self.check_result(torch_res.numpy(), custom_res) |
| 145 | + |
| 146 | + def test_index_copy_dim1_index1(self): |
| 147 | + input, index, source, dim = self.prepare_input(dim=1, index=1) |
| 148 | + custom_res = self.index_copy_custom(input, dim, index, source) |
| 149 | + torch_res = index_copy_torch(input, dim, index, source, dtype=self.dtype) |
| 150 | + self.check_result(torch_res.numpy(), custom_res.numpy()) |
| 151 | + |
| 152 | + def test_index_copy_dim1_index_max(self): |
| 153 | + index = max(self.head_dim - 1, 0) |
| 154 | + input, index, source, dim = self.prepare_input(dim=1, index=index) |
| 155 | + custom_res = self.index_copy_custom(input, dim, index, source) |
| 156 | + torch_res = index_copy_torch(input, dim, index, source, dtype=self.dtype) |
| 157 | + self.check_result(torch_res.numpy(), custom_res.numpy()) |
| 158 | + |
| 159 | + def test_index_copy_dim2_index0(self): |
| 160 | + input, index, source, dim = self.prepare_input(dim=2, index=0) |
| 161 | + custom_res = self.index_copy_custom(input, dim, index, source) |
| 162 | + torch_res = index_copy_torch(input, dim, index, source, dtype=self.dtype) |
| 163 | + self.check_result(torch_res.numpy(), custom_res.numpy()) |
| 164 | + |
| 165 | + def test_index_copy_dim2_index1(self): |
| 166 | + input, index, source, dim = self.prepare_input(dim=2, index=1) |
| 167 | + custom_res = self.index_copy_custom(input, dim, index, source) |
| 168 | + torch_res = index_copy_torch(input, dim, index, source, dtype=self.dtype) |
| 169 | + self.check_result(torch_res.numpy(), custom_res.numpy()) |
| 170 | + |
| 171 | + def test_index_copy_dim2_index_max(self): |
| 172 | + index = max(self.seq_length - 1, 0) |
| 173 | + input, index, source, dim = self.prepare_input(dim=2, index=index) |
| 174 | + custom_res = self.index_copy_custom(input, dim, index, source) |
| 175 | + torch_res = index_copy_torch(input, dim, index, source, dtype=self.dtype) |
| 176 | + self.check_result(torch_res.numpy(), custom_res.numpy()) |
| 177 | + |
| 178 | + def test_index_copy_dim3_index0(self): |
| 179 | + input, index, source, dim = self.prepare_input(dim=3, index=0) |
| 180 | + custom_res = self.index_copy_custom(input, dim, index, source) |
| 181 | + torch_res = index_copy_torch(input, dim, index, source, dtype=self.dtype) |
| 182 | + self.check_result(torch_res.numpy(), custom_res.numpy()) |
| 183 | + |
| 184 | + def test_index_copy_dim3_index1(self): |
| 185 | + input, index, source, dim = self.prepare_input(dim=3, index=1) |
| 186 | + custom_res = self.index_copy_custom(input, dim, index, source) |
| 187 | + torch_res = index_copy_torch(input, dim, index, source, dtype=self.dtype) |
| 188 | + self.check_result(torch_res.numpy(), custom_res.numpy()) |
| 189 | + |
| 190 | + def test_index_copy_dim3_index_max(self): |
| 191 | + index = max(self.batch_size - 1, 0) |
| 192 | + input, index, source, dim = self.prepare_input(dim=3, index=index) |
| 193 | + custom_res = self.index_copy_custom(input, dim, index, source) |
| 194 | + torch_res = index_copy_torch(input, dim, index, source, dtype=self.dtype) |
| 195 | + self.check_result(torch_res.numpy(), custom_res.numpy()) |
| 196 | + |
| 197 | + |
| 198 | +@skip_check_grad_ci(reason="index_copy_forward ops not support gradient calculation.") |
| 199 | +class TestIndexCopyOpFP16(TestIndexCopyOpFP32): |
| 200 | + def init_dtype(self): |
| 201 | + self.dtype = "float16" |
| 202 | + |
| 203 | + |
| 204 | +if __name__ == "__main__": |
| 205 | + unittest.main() |
0 commit comments