@@ -172,8 +172,12 @@ def setUp(self):
172
172
self .outputs = {"Output" : output }
173
173
174
174
def set_mlu (self ):
175
+ self .device = "mlu:0"
176
+ paddle .set_device (self .device )
175
177
self .__class__ .use_custom_device = True
176
- self .place = paddle .CustomPlace ("mlu" , 0 )
178
+ self .place = paddle .CustomPlace (
179
+ self .device .split (":" )[0 ], int (self .device .split (":" )[1 ])
180
+ )
177
181
178
182
def test_check_output (self ):
179
183
self .check_output_with_place (self .place , atol = 1e-2 )
@@ -429,8 +433,12 @@ def init_test_case(self):
429
433
self .filter_size = [f_c , 6 , 3 , 3 ]
430
434
431
435
def set_mlu (self ):
436
+ self .device = "mlu:0"
437
+ paddle .set_device (self .device )
432
438
self .__class__ .use_custom_device = True
433
- self .place = paddle .CustomPlace ("mlu" , 0 )
439
+ self .place = paddle .CustomPlace (
440
+ self .device .split (":" )[0 ], int (self .device .split (":" )[1 ])
441
+ )
434
442
435
443
def init_op_type (self ):
436
444
self .need_check_grad = False
@@ -485,58 +493,70 @@ def setUp(self):
485
493
self .set_mlu ()
486
494
487
495
def set_mlu (self ):
496
+ self .device = "mlu:0"
497
+ paddle .set_device (self .device )
488
498
self .__class__ .use_custom_device = True
489
- self .place = paddle .CustomPlace ("mlu" , 0 )
499
+ self .place = paddle .CustomPlace (
500
+ self .device .split (":" )[0 ], int (self .device .split (":" )[1 ])
501
+ )
490
502
491
503
def test_case1 (self ):
492
504
data1 = paddle .static .data (name = "data1" , shape = [- 1 , 3 , 5 , 5 ], dtype = "float32" )
493
505
data2 = paddle .static .data (name = "data2" , shape = [- 1 , 5 , 5 , 3 ], dtype = "float32" )
494
- out1 = paddle .static .nn .conv2d_transpose (
495
- input = data1 , groups = 1 , num_filters = 6 , filter_size = 3 , data_format = "NCHW"
496
- )
497
- out2 = paddle .static .nn .conv2d_transpose (
498
- input = data2 , groups = 1 , num_filters = 6 , filter_size = 3 , data_format = "NHWC"
499
- )
500
- out3 = paddle .static .nn .conv2d_transpose (
501
- input = data1 ,
506
+ out1 = paddle .nn .Conv2DTranspose (
507
+ in_channels = 3 ,
508
+ out_channels = 6 ,
509
+ kernel_size = 3 ,
510
+ groups = 1 ,
511
+ data_format = "NCHW" ,
512
+ )(data1 )
513
+ out2 = paddle .nn .Conv2DTranspose (
514
+ in_channels = 3 ,
515
+ out_channels = 6 ,
516
+ kernel_size = 3 ,
517
+ groups = 1 ,
518
+ data_format = "NHWC" ,
519
+ )(data2 )
520
+ out3 = paddle .nn .Conv2DTranspose (
521
+ in_channels = 5 ,
522
+ out_channels = 6 ,
523
+ kernel_size = 3 ,
502
524
groups = 1 ,
503
- num_filters = 6 ,
504
- filter_size = 3 ,
505
525
padding = [[0 , 0 ], [1 , 1 ], [1 , 1 ], [0 , 0 ]],
506
526
data_format = "NHWC" ,
507
- )
508
- out4 = paddle .static .nn .conv2d_transpose (
509
- input = data1 ,
527
+ )(data1 )
528
+ out4 = paddle .nn .Conv2DTranspose (
529
+ in_channels = 3 ,
530
+ out_channels = 6 ,
531
+ kernel_size = 3 ,
510
532
groups = 3 ,
511
- num_filters = 6 ,
512
- filter_size = 3 ,
513
533
padding = [[0 , 0 ], [0 , 0 ], [2 , 1 ], [0 , 0 ]],
514
534
data_format = "NCHW" ,
515
- )
516
- out5 = paddle .static .nn .conv2d_transpose (
517
- input = data2 ,
535
+ )(data1 )
536
+ out5 = paddle .nn .Conv2DTranspose (
537
+ in_channels = 5 ,
538
+ out_channels = 6 ,
539
+ kernel_size = 3 ,
518
540
groups = 1 ,
519
- num_filters = 6 ,
520
- filter_size = 3 ,
521
541
padding = "SAME" ,
522
542
data_format = "NCHW" ,
523
- )
524
- out6 = paddle .static .nn .conv2d_transpose (
525
- input = data1 ,
543
+ )(data2 )
544
+ out6 = paddle .nn .Conv2DTranspose (
545
+ in_channels = 5 ,
546
+ out_channels = 6 ,
547
+ kernel_size = 3 ,
526
548
groups = 1 ,
527
- num_filters = 6 ,
528
- filter_size = 3 ,
529
549
padding = "VALID" ,
530
550
data_format = "NHWC" ,
531
- )
532
- out7 = paddle .static .nn .conv2d_transpose (
533
- input = data1 ,
551
+ )(data1 )
552
+ out7 = paddle .nn .Conv2DTranspose (
553
+ in_channels = 5 ,
554
+ out_channels = 6 ,
555
+ kernel_size = [5 , 3 ],
534
556
groups = 1 ,
535
- num_filters = 6 ,
536
- output_size = [7 , 7 ],
537
557
padding = [0 , 0 ],
538
558
data_format = "NHWC" ,
539
- )
559
+ )( data1 , [ 7 , 7 ])
540
560
541
561
data1_np = np .random .random ((2 , 3 , 5 , 5 )).astype ("float32" )
542
562
data2_np = np .random .random ((2 , 5 , 5 , 3 )).astype ("float32" )
@@ -563,46 +583,50 @@ def setUp(self):
563
583
self .set_mlu ()
564
584
565
585
def set_mlu (self ):
586
+ self .device = "mlu:0"
587
+ paddle .set_device (self .device )
566
588
self .__class__ .use_custom_device = True
567
- self .place = paddle .CustomPlace ("mlu" , 0 )
589
+ self .place = paddle .CustomPlace (
590
+ self .device .split (":" )[0 ], int (self .device .split (":" )[1 ])
591
+ )
568
592
569
593
def test_exception (self ):
570
594
data = paddle .static .data (name = "data" , shape = [- 1 , 3 , 5 , 5 ], dtype = "float32" )
571
595
572
596
def attr_data_format ():
573
- out = paddle .static . nn .conv2d_transpose (
574
- input = data , groups = 1 , num_filters = 6 , filter_size = 3 , data_format = "NCDHW"
575
- )
597
+ out = paddle .nn .Conv2DTranspose (
598
+ in_channels = 3 , out_channels = 6 , kernel_size = 3 , data_format = "NCDHW"
599
+ )( data )
576
600
577
601
self .assertRaises (ValueError , attr_data_format )
578
602
579
603
def attr_padding_str ():
580
- out = paddle .static . nn .conv2d_transpose (
581
- input = data , groups = 1 , num_filters = 6 , filter_size = 3 , padding = "Vald"
582
- )
604
+ out = paddle .nn .Conv2DTranspose (
605
+ in_channels = 3 , out_channels = 6 , kernel_size = 3 , padding = "Vald"
606
+ )( data )
583
607
584
608
self .assertRaises (ValueError , attr_padding_str )
585
609
586
610
def attr_padding_list ():
587
- out = paddle .static . nn .conv2d_transpose (
588
- input = data ,
611
+ out = paddle .nn .Conv2DTranspose (
612
+ in_channels = 3 ,
589
613
groups = 1 ,
590
- num_filters = 6 ,
591
- filter_size = 3 ,
614
+ out_channels = 6 ,
615
+ kernel_size = 3 ,
592
616
padding = [[1 , 1 ], [1 , 1 ], [0 , 0 ], [0 , 0 ]],
593
- )
617
+ )( data )
594
618
595
619
self .assertRaises (ValueError , attr_padding_list )
596
620
597
621
def attr_padding_with_data_format ():
598
- out = paddle .static . nn .conv2d_transpose (
599
- input = data ,
622
+ out = paddle .nn .Conv2DTranspose (
623
+ in_channels = 5 ,
600
624
groups = 1 ,
601
- num_filters = 6 ,
602
- filter_size = 3 ,
625
+ out_channels = 6 ,
626
+ kernel_size = 3 ,
603
627
padding = [[1 , 1 ], [0 , 0 ], [0 , 0 ], [1 , 1 ]],
604
628
data_format = "NHWC" ,
605
- )
629
+ )( data )
606
630
607
631
self .assertRaises (ValueError , attr_padding_with_data_format )
608
632
@@ -611,27 +635,37 @@ def attr_padding_with_data_format():
611
635
)
612
636
613
637
def error_input_size ():
614
- out = paddle .static .nn .conv2d_transpose (
615
- input = error_input , groups = 1 , num_filters = 6 , filter_size = 3
616
- )
638
+ out = paddle .nn .Conv2DTranspose (
639
+ in_channels = 1 ,
640
+ groups = 1 ,
641
+ out_channels = 6 ,
642
+ kernel_size = 3 ,
643
+ )(error_input )
617
644
618
645
self .assertRaises (ValueError , error_input_size )
619
646
620
647
def error_groups ():
621
- out = paddle .static .nn .conv2d_transpose (
622
- input = data , groups = 0 , num_filters = 6 , filter_size = 3 , data_format = "NHWC"
623
- )
648
+ out = paddle .nn .Conv2DTranspose (
649
+ in_channels = 5 ,
650
+ groups = 0 ,
651
+ out_channels = 6 ,
652
+ kernel_size = 3 ,
653
+ )(data )
624
654
625
- self .assertRaises (ValueError , error_groups )
655
+ self .assertRaises (ZeroDivisionError , error_groups )
626
656
627
657
628
658
class TestConv2DTransposeRepr (unittest .TestCase ):
629
659
def setUp (self ):
630
660
self .set_mlu ()
631
661
632
662
def set_mlu (self ):
663
+ self .device = "mlu:0"
664
+ paddle .set_device (self .device )
633
665
self .__class__ .use_custom_device = True
634
- self .place = paddle .CustomPlace ("mlu" , 0 )
666
+ self .place = paddle .CustomPlace (
667
+ self .device .split (":" )[0 ], int (self .device .split (":" )[1 ])
668
+ )
635
669
636
670
def test_case (self ):
637
671
paddle .disable_static ()
0 commit comments