|
| 1 | +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +// |
| 3 | +// Licensed under the Apache License, Version 2.0 (the "License"); you may |
| 4 | +// not use this file except in compliance with the License. |
| 5 | +// You may obtain a copy of the License at |
| 6 | +// |
| 7 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +// |
| 9 | +// Unless required by applicable law or agreed to in writing, software |
| 10 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +// See the License for the specific language governing permissions and |
| 13 | +// limitations under the License. |
| 14 | + |
| 15 | +#include "habanalabs/perf_lib_layer_params.h" |
| 16 | +#include "kernels/funcs.h" |
| 17 | +#include "kernels/hpu_operator.h" |
| 18 | +#include "paddle/extension.h" |
| 19 | +#include "utils/utils.h" |
| 20 | + |
| 21 | +namespace custom_kernel { |
| 22 | + |
| 23 | +class IndexReduce : public HpuOperator { |
| 24 | + public: |
| 25 | + explicit IndexReduce(synDataType dtype) |
| 26 | + : HpuOperator("index_reduce_fwd"), dtype_(dtype) {} |
| 27 | + |
| 28 | + void AddNode(ConvertTensors& ct, ns_IndexReduce::Params params) { |
| 29 | + auto inputs = ct.GetTensors(); |
| 30 | + auto outputs = ct.GetTensors(false); |
| 31 | + |
| 32 | + synSectionHandle section = createSection(); |
| 33 | + |
| 34 | + std::vector<synTensor> syn_inputs; |
| 35 | + syn_inputs.push_back(createTensor(inputs[0].dims.size(), |
| 36 | + inputs[0].type, |
| 37 | + inputs[0].dims, |
| 38 | + true, |
| 39 | + inputs[0].name, |
| 40 | + section)); |
| 41 | + |
| 42 | + syn_inputs.push_back(createTensor(inputs[1].dims.size(), |
| 43 | + inputs[1].type, |
| 44 | + inputs[1].dims, |
| 45 | + true, |
| 46 | + inputs[1].name)); |
| 47 | + |
| 48 | + syn_inputs.push_back(createTensor(inputs[2].dims.size(), |
| 49 | + inputs[2].type, |
| 50 | + inputs[2].dims, |
| 51 | + true, |
| 52 | + inputs[2].name)); |
| 53 | + |
| 54 | + std::vector<synTensor> syn_outputs; |
| 55 | + syn_outputs.push_back(createTensor(outputs[0].dims.size(), |
| 56 | + outputs[0].type, |
| 57 | + outputs[0].dims, |
| 58 | + true, |
| 59 | + outputs[0].name, |
| 60 | + section)); |
| 61 | + |
| 62 | + std::string guid = guid_ + "_" + SynDataTypeToStr(outputs[0].type); |
| 63 | + synStatus status = synNodeCreate(graphHandle_, |
| 64 | + syn_inputs.data(), |
| 65 | + syn_outputs.data(), |
| 66 | + syn_inputs.size(), |
| 67 | + syn_outputs.size(), |
| 68 | + ¶ms, |
| 69 | + sizeof(params), |
| 70 | + guid.c_str(), |
| 71 | + "index_copy", |
| 72 | + nullptr, |
| 73 | + nullptr); |
| 74 | + |
| 75 | + PD_CHECK( |
| 76 | + status == synSuccess, "[RUNTIME] synNodeCreate () failed = %d", status); |
| 77 | + } |
| 78 | + |
| 79 | + protected: |
| 80 | + synDataType dtype_; |
| 81 | +}; |
| 82 | + |
| 83 | +template <typename T, typename Context> |
| 84 | +void IndexReduceKernel(const Context& dev_ctx, |
| 85 | + const phi::DenseTensor& input, |
| 86 | + const phi::Scalar& dim, |
| 87 | + const phi::DenseTensor& index, |
| 88 | + const phi::DenseTensor& source) { |
| 89 | + ConvertTensors ct; |
| 90 | + ct.Add(input); |
| 91 | + ct.Add(index); |
| 92 | + ct.Add(source); |
| 93 | + |
| 94 | + ct.Add(input, false); |
| 95 | + |
| 96 | + std::vector<DIMS> inputs_dims = ct.GetDims(); |
| 97 | + ns_IndexReduce::Params params{}; |
| 98 | + params.mode = INDEX_REDUCE_AMAX; |
| 99 | + params.include_self = true; |
| 100 | + params.axis = dim.to<unsigned>(); |
| 101 | + |
| 102 | + OpCacheOperator op_info; |
| 103 | + op_info.prepareOpInfo<T, ns_IndexReduce::Params>( |
| 104 | + "IndexReduceKernel_", inputs_dims, ¶ms); |
| 105 | + |
| 106 | + auto recipe = op_info.GetRecipe(); |
| 107 | + |
| 108 | + if (recipe == nullptr) { |
| 109 | + IndexReduce op(op_info.datatype_); |
| 110 | + op.AddNode(ct, params); |
| 111 | + op.Compile(); |
| 112 | + op_info.setOp(op); |
| 113 | + recipe = op_info.GetRecipe(); |
| 114 | + } |
| 115 | + |
| 116 | + RecipeRunner runner(recipe); |
| 117 | + auto tensors = ct.GetDeviceAddr(); |
| 118 | + runner.Run(reinterpret_cast<C_Stream>(dev_ctx.stream()), tensors); |
| 119 | +} |
| 120 | + |
| 121 | +} // namespace custom_kernel |
| 122 | + |
| 123 | +template <typename Context> |
| 124 | +void CallIndexReduceKernel(const Context& dev_ctx, |
| 125 | + const phi::DenseTensor& input, |
| 126 | + const phi::Scalar& dim, |
| 127 | + const phi::DenseTensor& index, |
| 128 | + const phi::DenseTensor& source, |
| 129 | + const std::string reduce = "amax", |
| 130 | + const bool include_self = true) { |
| 131 | + if (input.dtype() == phi::DataType::FLOAT32) { |
| 132 | + custom_kernel::IndexReduceKernel<float>(dev_ctx, input, dim, index, source); |
| 133 | + } else if (input.dtype() == phi::DataType::INT32) { |
| 134 | + custom_kernel::IndexReduceKernel<int32_t>( |
| 135 | + dev_ctx, input, dim, index, source); |
| 136 | + } else if (input.dtype() == phi::DataType::BFLOAT16) { |
| 137 | + custom_kernel::IndexReduceKernel<phi::dtype::bfloat16>( |
| 138 | + dev_ctx, input, dim, index, source); |
| 139 | + } else { |
| 140 | + throw std::runtime_error("Unsupported data type for IndexReduceKernel"); |
| 141 | + } |
| 142 | +} |
| 143 | + |
| 144 | +void IndexReduceForward(const paddle::Tensor& input, |
| 145 | + const int dim, |
| 146 | + const paddle::Tensor& index, |
| 147 | + const paddle::Tensor& source, |
| 148 | + const std::string reduce = "amax", |
| 149 | + const bool include_self = true) { |
| 150 | + PD_CHECK(reduce == "amax", "only support reduce = amax"); |
| 151 | + PD_CHECK(include_self == true, "only support include_self = true"); |
| 152 | + auto dev_ctx = static_cast<const phi::CustomContext*>( |
| 153 | + paddle::experimental::DeviceContextPool::Instance().Get(input.place())); |
| 154 | + |
| 155 | + auto input_tensor = static_cast<phi::DenseTensor*>(input.impl().get()); |
| 156 | + auto index_tensor = static_cast<const phi::DenseTensor*>(index.impl().get()); |
| 157 | + auto source_tensor = |
| 158 | + static_cast<const phi::DenseTensor*>(source.impl().get()); |
| 159 | + |
| 160 | + CallIndexReduceKernel( |
| 161 | + *dev_ctx, *input_tensor, phi::Scalar(dim), *index_tensor, *source_tensor); |
| 162 | +} |
| 163 | + |
| 164 | +std::vector<std::vector<int64_t>> IndexReduceInferShape( |
| 165 | + const std::vector<int64_t>& input_shape, |
| 166 | + const std::vector<int64_t>& index_shape, |
| 167 | + const std::vector<int64_t>& source_shape) { |
| 168 | + return {input_shape}; |
| 169 | +} |
| 170 | + |
| 171 | +std::vector<paddle::DataType> IndexReduceInferDtype( |
| 172 | + const paddle::DataType& input_dtype, |
| 173 | + const paddle::DataType& index_dtype, |
| 174 | + const paddle::DataType& source_dtype) { |
| 175 | + return {input_dtype}; |
| 176 | +} |
| 177 | + |
| 178 | +PD_BUILD_OP(index_reduce_) |
| 179 | + .Inputs({"input", "index", "source"}) |
| 180 | + .Outputs({"out"}) |
| 181 | + .Attrs({"dim: int", "reduce: std::string", "include_self: bool"}) |
| 182 | + .SetInplaceMap({{"input", "out"}}) |
| 183 | + .SetKernelFn(PD_KERNEL(IndexReduceForward)) |
| 184 | + .SetInferShapeFn(PD_INFER_SHAPE(IndexReduceInferShape)) |
| 185 | + .SetInferDtypeFn(PD_INFER_DTYPE(IndexReduceInferDtype)); |
0 commit comments