@@ -100,7 +100,7 @@ def test_lorapro_model_restore(self):
100
100
head_dim = 2 ,
101
101
lorapro = True ,
102
102
)
103
- model = AutoModel .from_pretrained ("test_paddleformers /tiny-random-bert" )
103
+ model = AutoModel .from_pretrained ("Paddleformers /tiny-random-bert" )
104
104
input_ids = paddle .to_tensor (np .random .randint (100 , 200 , [1 , 20 ]))
105
105
model .eval ()
106
106
original_results_1 = model (input_ids )
@@ -126,7 +126,7 @@ def test_lorapro_model_constructor(self, bias):
126
126
)
127
127
# turn off plm dropout for to test train vs test
128
128
model = AutoModel .from_pretrained (
129
- "test_paddleformers /tiny-random-bert" ,
129
+ "Paddleformers /tiny-random-bert" ,
130
130
hidden_dropout_prob = 0 ,
131
131
attention_probs_dropout_prob = 0 ,
132
132
)
@@ -158,7 +158,7 @@ def test_lorapro_model_save_load(self):
158
158
with TemporaryDirectory () as tempdir :
159
159
input_ids = paddle .to_tensor (np .random .randint (100 , 200 , [1 , 20 ]))
160
160
lorapro_config = LoRAConfig (target_modules = [".*q_proj.*" , ".*v_proj.*" ], r = 4 , lora_alpha = 8 , lorapro = True )
161
- model = AutoModel .from_pretrained ("test_paddleformers /tiny-random-bert" )
161
+ model = AutoModel .from_pretrained ("Paddleformers /tiny-random-bert" )
162
162
lorapro_model = LoRAModel (model , lorapro_config )
163
163
lorapro_model .eval ()
164
164
original_results = lorapro_model (input_ids )
@@ -186,7 +186,7 @@ def test_lorapro_modes(self, x_mode):
186
186
lorapro = True ,
187
187
)
188
188
189
- model = AutoModel .from_pretrained ("test_paddleformers /tiny-random-bert" )
189
+ model = AutoModel .from_pretrained ("Paddleformers /tiny-random-bert" )
190
190
lorapro_model = LoRAModel (model , lorapro_config )
191
191
lorapro_model .mark_only_lora_as_trainable ()
192
192
@@ -218,7 +218,7 @@ def test_lorapro_module_raise_exception(self):
218
218
lorapro_config = LoRAConfig (
219
219
target_modules = [".*norm1.*" ], r = 4 , lora_alpha = 8 , enable_lora_list = None , lorapro = True
220
220
)
221
- model = AutoModel .from_pretrained ("test_paddleformers /tiny-random-bert" )
221
+ model = AutoModel .from_pretrained ("Paddleformers /tiny-random-bert" )
222
222
with self .assertRaises (ValueError ):
223
223
LoRAModel (model , lorapro_config )
224
224
0 commit comments