|
| 1 | +# coding=utf-8 |
| 2 | +# Copyright 2024 The HuggingFace Inc. team. |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | +"""MAMBA configuration""" |
| 16 | + |
| 17 | +import math |
| 18 | + |
| 19 | +from ..configuration_utils import PretrainedConfig |
| 20 | + |
| 21 | +__all__ = ["MambaConfig"] |
| 22 | + |
| 23 | + |
| 24 | +class MambaConfig(PretrainedConfig): |
| 25 | + """ |
| 26 | + This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA |
| 27 | + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
| 28 | + defaults will yield a similar configuration to that of the MAMBA |
| 29 | + [state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture. |
| 30 | +
|
| 31 | + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
| 32 | + documentation from [`PretrainedConfig`] for more information. |
| 33 | +
|
| 34 | +
|
| 35 | + Args: |
| 36 | + vocab_size (`int`, *optional*, defaults to 50280): |
| 37 | + Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the |
| 38 | + `inputs_ids` passed when calling [`MambaModel`]. |
| 39 | + hidden_size (`int`, *optional*, defaults to 768): |
| 40 | + Dimensionality of the embeddings and hidden states. |
| 41 | + state_size (`int`, *optional*, defaults to 16): shape of the state space latents. |
| 42 | + num_hidden_layers (`int`, *optional*, defaults to 32): |
| 43 | + Number of hidden layers in the model. |
| 44 | + layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): |
| 45 | + The epsilon to use in the layer normalization layers. |
| 46 | + pad_token_id (`int`, *optional*, defaults to 0): |
| 47 | + Padding token id. |
| 48 | + bos_token_id (`int`, *optional*, defaults to 0): |
| 49 | + The id of the beginning of sentence token in the vocabulary. |
| 50 | + eos_token_id (`int`, *optional*, defaults to 0): |
| 51 | + The id of the end of sentence token in the vocabulary. |
| 52 | + expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size. |
| 53 | + conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel. |
| 54 | + use_bias (`bool`, *optional*, defaults to `False`): |
| 55 | + Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block |
| 56 | + use_conv_bias (`bool`, *optional*, defaults to `True`): |
| 57 | + Whether or not to use bias in the convolution layer of the mixer block. |
| 58 | + hidden_act (`str`, *optional*, defaults to `"silu"`): |
| 59 | + The non-linear activation function (function or string) in the decoder. |
| 60 | + initializer_range (`float`, *optional*, defaults to 0.1): |
| 61 | + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
| 62 | + residual_in_fp32 (`bool`, *optional*, defaults to `True`): |
| 63 | + Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model |
| 64 | + time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): |
| 65 | + Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` |
| 66 | + time_step_scale (`float`, *optional*, defaults to 1.0): |
| 67 | + Scale used used to scale `dt_proj.bias`. |
| 68 | + time_step_min (`float`, *optional*, defaults to 0.001): |
| 69 | + Minimum `time_step` used to bound `dt_proj.bias`. |
| 70 | + time_step_max (`float`, *optional*, defaults to 0.1): |
| 71 | + Maximum `time_step` used to bound `dt_proj.bias`. |
| 72 | + time_step_init_scheme (`float`, *optional*, defaults to `"random"`): |
| 73 | + Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]` |
| 74 | + time_step_floor (`float`, *optional*, defaults to 0.0001): |
| 75 | + Minimum clamping value of the `dt_proj.bias` layer initialization. |
| 76 | + rescale_prenorm_residual (`bool`, *optional*, defaults to `False`): |
| 77 | + Whether or not to rescale `out_proj` weights when initializing. |
| 78 | + use_cache (`bool`, *optional*, defaults to `True`): |
| 79 | + Whether or not the cache should be used. |
| 80 | +
|
| 81 | +
|
| 82 | + Example: |
| 83 | +
|
| 84 | + ```python |
| 85 | + >>> from paddlenlp.transformers import MambaConfig, MambaModel |
| 86 | +
|
| 87 | + >>> # Initializing a Mamba configuration |
| 88 | + >>> configuration = MambaConfig() |
| 89 | +
|
| 90 | + >>> # Initializing a model (with random weights) from the configuration |
| 91 | + >>> model = MambaModel(configuration) |
| 92 | +
|
| 93 | + >>> # Accessing the model configuration |
| 94 | + >>> configuration = model.config |
| 95 | + ```""" |
| 96 | + |
| 97 | + model_type = "mamba" |
| 98 | + |
| 99 | + def __init__( |
| 100 | + self, |
| 101 | + vocab_size=50280, |
| 102 | + hidden_size=768, |
| 103 | + state_size=16, |
| 104 | + num_hidden_layers=32, |
| 105 | + layer_norm_epsilon=1e-5, |
| 106 | + pad_token_id=0, |
| 107 | + bos_token_id=0, |
| 108 | + eos_token_id=0, |
| 109 | + expand=2, |
| 110 | + conv_kernel=4, |
| 111 | + use_bias=False, |
| 112 | + use_conv_bias=True, |
| 113 | + hidden_act="silu", |
| 114 | + initializer_range=0.1, |
| 115 | + residual_in_fp32=True, |
| 116 | + time_step_rank="auto", |
| 117 | + time_step_scale=1.0, |
| 118 | + time_step_min=0.001, |
| 119 | + time_step_max=0.1, |
| 120 | + time_step_init_scheme="random", |
| 121 | + time_step_floor=1e-4, |
| 122 | + rescale_prenorm_residual=False, |
| 123 | + use_cache=True, |
| 124 | + **kwargs, |
| 125 | + ): |
| 126 | + kwargs["return_dict"] = kwargs.pop("return_dict", True) |
| 127 | + super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs) |
| 128 | + self.vocab_size = vocab_size |
| 129 | + self.hidden_size = hidden_size |
| 130 | + self.state_size = state_size |
| 131 | + self.num_hidden_layers = num_hidden_layers |
| 132 | + self.layer_norm_epsilon = layer_norm_epsilon |
| 133 | + self.conv_kernel = conv_kernel |
| 134 | + self.expand = expand |
| 135 | + self.intermediate_size = int(expand * self.hidden_size) |
| 136 | + self.bos_token_id = bos_token_id |
| 137 | + self.eos_token_id = eos_token_id |
| 138 | + self.pad_token_id = pad_token_id |
| 139 | + self.use_bias = use_bias |
| 140 | + self.use_conv_bias = use_conv_bias |
| 141 | + self.hidden_act = hidden_act |
| 142 | + self.initializer_range = initializer_range |
| 143 | + self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank |
| 144 | + self.time_step_scale = time_step_scale |
| 145 | + self.time_step_min = time_step_min |
| 146 | + self.time_step_max = time_step_max |
| 147 | + self.time_step_init_scheme = time_step_init_scheme |
| 148 | + self.time_step_floor = time_step_floor |
| 149 | + self.rescale_prenorm_residual = rescale_prenorm_residual |
| 150 | + self.residual_in_fp32 = residual_in_fp32 |
| 151 | + self.use_cache = use_cache |
0 commit comments