Skip to content

Commit decf736

Browse files
authored
Fix GPT modle error link. (#487)
1 parent a0c0aba commit decf736

File tree

4 files changed

+13
-10
lines changed

4 files changed

+13
-10
lines changed

docs/transformers.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,15 +5,15 @@
55

66
## Transformer预训练模型汇总
77

8-
下表汇总了目前PaddleNLP支持的各类预训练模型。用户可以使用PaddleNLP提供的模型,完成问答、文本分类、序列标注、文本生成等任务。同时我们提供了48种预训练的参数权重供用户使用,其中包含了23种中文语言模型的预训练权重
8+
下表汇总了目前PaddleNLP支持的各类预训练模型。用户可以使用PaddleNLP提供的模型,完成问答、文本分类、序列标注、文本生成等任务。同时我们提供了48种预训练的参数权重供用户使用,其中包含了24种中文语言模型的预训练权重
99

1010
| Model | Tokenizer | Supported Task | Pretrained Weight|
1111
|---|---|---|---|
1212
|[ALBERT](https://arxiv.org/abs/1909.11942)| AlbertTokenizer| AlbertModel<br> AlbertForMaskedLM<br> AlbertForQuestionAnswering<br> AlbertForMultipleChoice<br> AlbertForSequenceClassification<br> AlbertForTokenClassification |`albert-base-v1`<br> `albert-large-v1`<br> `albert-xlarge-v1`<br> `albert-xxlarge-v1`<br> `albert-base-v2`<br> `albert-large-v2`<br> `albert-xlarge-v2`<br> `albert-xxlarge-v2`<br> `albert-chinese-tiny`<br> `albert-chinese-small`<br> `albert-chinese-base`<br> `albert-chinese-large`<br> `albert-chinese-xlarge`<br> `albert-chinese-xxlarge` |
1313
|[BERT](https://arxiv.org/abs/1810.04805) | BertTokenizer|BertModel<br> BertForQuestionAnswering<br> BertForSequenceClassification<br>BertForTokenClassification| `bert-base-uncased`<br> `bert-large-uncased` <br>`bert-base-multilingual-uncased` <br>`bert-base-cased`<br> `bert-base-chinese`<br> `bert-base-multilingual-cased`<br> `bert-large-cased`<br> `bert-wwm-chinese`<br> `bert-wwm-ext-chinese` |
1414
|[ERNIE](https://arxiv.org/abs/1904.09223)|ErnieTokenizer<br>ErnieTinyTokenizer|ErnieModel<br> ErnieForQuestionAnswering<br> ErnieForSequenceClassification<br> ErnieForTokenClassification | `ernie-1.0`<br> `ernie-tiny`<br> `ernie-2.0-en`<br> `ernie-2.0-large-en`|
1515
|[ERNIE-GEN](https://arxiv.org/abs/2001.11314)|ErnieTokenizer| ErnieForGeneration|`ernie-gen-base-en`<br>`ernie-gen-large-en`<br>`ernie-gen-large-en-430g`|
16-
|[GPT](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)| GPTTokenizer<br> GPTChineseTokenizer| GPTForGreedyGeneration| `gpt-cpm-large-cn` <br> `gpt2-medium-en`|
16+
|[GPT](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)| GPTTokenizer<br> GPTChineseTokenizer| GPTForGreedyGeneration| `gpt-cpm-large-cn` <br> `gpt-cpm-small-cn-distill` <br> `gpt2-medium-en`|
1717
|[RoBERTa](https://arxiv.org/abs/1907.11692)|RobertaTokenizer| RobertaModel<br>RobertaForQuestionAnswering<br>RobertaForSequenceClassification<br>RobertaForTokenClassification| `roberta-wwm-ext`<br> `roberta-wwm-ext-large`<br> `rbt3`<br> `rbtl3`|
1818
|[ELECTRA](https://arxiv.org/abs/2003.10555) | ElectraTokenizer| ElectraModel<br>ElectraForSequenceClassification<br>ElectraForTokenClassification<br>|`electra-small`<br> `electra-base`<br> `electra-large`<br> `chinese-electra-small`<br> `chinese-electra-base`<br>|
1919
|[XLNet](https://arxiv.org/abs/1906.08237)| XLNetTokenizer| XLNetModel<br> XLNetForSequenceClassification<br> XLNetForTokenClassification |`xlnet-base-cased`<br> `xlnet-large-cased`<br> `chinese-xlnet-base`<br> `chinese-xlnet-mid`<br> `chinese-xlnet-large`|
@@ -22,7 +22,7 @@
2222
|[TinyBERT](https://arxiv.org/abs/1909.10351) |TinyBertTokenizer | TinyBertModel<br>TinyBertForPretraining<br>TinyBertForSequenceClassification | `tinybert-4l-312d`<br>`tinybert-6l-768d`<br>`tinybert-4l-312d-v2`<br>`tinybert-6l-768d-v2` |
2323
|[Transformer](https://arxiv.org/abs/1706.03762) |- | TransformerModel | - |
2424

25-
**NOTE**:其中中文的预训练模型有`albert-chinese-tiny, albert-chinese-small, albert-chinese-base, albert-chinese-large, albert-chinese-xlarge, albert-chinese-xxlarge, bert-base-chinese, bert-wwm-chinese, bert-wwm-ext-chinese, ernie-1.0, ernie-tiny, gpt-cpm-large-cn, roberta-wwm-ext, roberta-wwm-ext-large, rbt3, rbtl3, chinese-electra-base, chinese-electra-small, chinese-xlnet-base, chinese-xlnet-mid, chinese-xlnet-large, unified_transformer-12L-cn, unified_transformer-12L-cn-luge`
25+
**NOTE**:其中中文的预训练模型有`albert-chinese-tiny, albert-chinese-small, albert-chinese-base, albert-chinese-large, albert-chinese-xlarge, albert-chinese-xxlarge, bert-base-chinese, bert-wwm-chinese, bert-wwm-ext-chinese, ernie-1.0, ernie-tiny, gpt-cpm-large-cn, gpt-cpm-small-cn-distill, roberta-wwm-ext, roberta-wwm-ext-large, rbt3, rbtl3, chinese-electra-base, chinese-electra-small, chinese-xlnet-base, chinese-xlnet-mid, chinese-xlnet-large, unified_transformer-12L-cn, unified_transformer-12L-cn-luge`
2626

2727
## 预训练模型使用方法
2828

examples/language_model/gpt/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ bash decompress.sh
5353

5454
```shell
5555
python create_pretraining_data.py --input_path raw_data \
56-
--model_name gpt2-medium-en \
56+
--model_name gpt2-en \
5757
--append_eod \
5858
--workers 8
5959
```

examples/language_model/gpt/create_pretraining_data.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -46,8 +46,8 @@ class Converter(object):
4646
def __init__(self, model_name, append_eod):
4747
self.append_eod = append_eod
4848
self.tokenizer = GPTTokenizer.from_pretrained(model_name)
49-
self.eod_id = tokenizer.eod_token_id
50-
self.vocab_size = len(tokenizer)
49+
self.eod_id = self.tokenizer.eod_token_id
50+
self.vocab_size = len(self.tokenizer)
5151

5252
def encode(self, text):
5353
tokens = self.tokenizer(text)["input_ids"]

paddlenlp/transformers/gpt/tokenizer.py

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -81,14 +81,17 @@ class GPTChineseTokenizer(PretrainedTokenizer):
8181
"model_file": "sentencepiece.model"
8282
} # for save_pretrained
8383

84-
cpm_modle_link = "https://paddlenlp.bj.bcebos.com/models/transformers/gpt/gpt-cpm-cn-sentencepiece.model"
84+
cpm_model_link = "https://paddlenlp.bj.bcebos.com/models/transformers/gpt/gpt-cpm-cn-sentencepiece.model"
8585
pretrained_resource_files_map = {
8686
"model_file": {
87-
"gpt-cpm-large-cn": cpm_modle_link,
88-
"gpt-cpm-small-cn-distill": cpm_modle_link,
87+
"gpt-cpm-large-cn": cpm_model_link,
88+
"gpt-cpm-small-cn-distill": cpm_model_link,
8989
}
9090
}
91-
pretrained_init_configuration = {"gpt-cpm-large-cn": {}, "gpt-cpm-small-cn-distill": {}, }
91+
pretrained_init_configuration = {
92+
"gpt-cpm-large-cn": {},
93+
"gpt-cpm-small-cn-distill": {},
94+
}
9295

9396
def __init__(
9497
self,

0 commit comments

Comments
 (0)