|
| 1 | +import paddle |
| 2 | +import paddle.nn as nn |
| 3 | +from paddlenlp.transformers import ElectraPretrainedModel |
| 4 | + |
| 5 | + |
| 6 | +class ElectraForBinaryTokenClassification(ElectraPretrainedModel): |
| 7 | + """ |
| 8 | + Electra Model with two linear layers on top of the hidden-states output layers, |
| 9 | + designed for token classification tasks with nesting. |
| 10 | +
|
| 11 | + Args: |
| 12 | + electra (:class:`ElectraModel`): |
| 13 | + An instance of ElectraModel. |
| 14 | + num_classes (list): |
| 15 | + The number of classes. |
| 16 | + dropout (float, optionl): |
| 17 | + The dropout probability for output of Electra. |
| 18 | + If None, use the same value as `hidden_dropout_prob' of 'ElectraModel` |
| 19 | + instance `electra`. Defaults to None. |
| 20 | + """ |
| 21 | + |
| 22 | + def __init__(self, electra, num_classes, dropout=None): |
| 23 | + super(ElectraForBinaryTokenClassification, self).__init__() |
| 24 | + assert (len(num_classes) == 2) |
| 25 | + self.num_classes_oth = num_classes[0] |
| 26 | + self.num_classes_sym = num_classes[1] |
| 27 | + self.electra = electra |
| 28 | + self.dropout = nn.Dropout(dropout if dropout is not None else |
| 29 | + self.electra.config['hidden_dropout_prob']) |
| 30 | + self.classifier_oth = nn.Linear(self.electra.config['hidden_size'], |
| 31 | + self.num_classes_oth) |
| 32 | + self.classifier_sym = nn.Linear(self.electra.config['hidden_size'], |
| 33 | + self.num_classes_sym) |
| 34 | + self.init_weights() |
| 35 | + |
| 36 | + def forward(self, |
| 37 | + input_ids=None, |
| 38 | + token_type_ids=None, |
| 39 | + position_ids=None, |
| 40 | + attention_mask=None): |
| 41 | + sequence_output = self.electra(input_ids, token_type_ids, position_ids, |
| 42 | + attention_mask) |
| 43 | + sequence_output = self.dropout(sequence_output) |
| 44 | + |
| 45 | + logits_sym = self.classifier_sym(sequence_output) |
| 46 | + logits_oth = self.classifier_oth(sequence_output) |
| 47 | + return logits_oth, logits_sym |
| 48 | + |
| 49 | + |
| 50 | +class MultiHeadAttentionForSPO(nn.Layer): |
| 51 | + """ |
| 52 | + Multi-head attention layer for SPO task. |
| 53 | + """ |
| 54 | + |
| 55 | + def __init__(self, embed_dim, num_heads, scale_value=768): |
| 56 | + super(MultiHeadAttentionForSPO, self).__init__() |
| 57 | + self.embed_dim = embed_dim |
| 58 | + self.num_heads = num_heads |
| 59 | + self.scale_value = scale_value**-0.5 |
| 60 | + self.q_proj = nn.Linear(embed_dim, embed_dim * num_heads) |
| 61 | + self.k_proj = nn.Linear(embed_dim, embed_dim * num_heads) |
| 62 | + |
| 63 | + def forward(self, query, key): |
| 64 | + q = self.q_proj(query) |
| 65 | + k = self.k_proj(query) |
| 66 | + q = paddle.reshape(q, shape=[0, 0, self.num_heads, self.embed_dim]) |
| 67 | + k = paddle.reshape(k, shape=[0, 0, self.num_heads, self.embed_dim]) |
| 68 | + q = paddle.transpose(q, perm=[0, 2, 1, 3]) |
| 69 | + k = paddle.transpose(k, perm=[0, 2, 1, 3]) |
| 70 | + scores = paddle.matmul(q, k, transpose_y=True) |
| 71 | + scores = paddle.scale(scores, scale=self.scale_value) |
| 72 | + return scores |
| 73 | + |
| 74 | + |
| 75 | +class ElectraForSPO(ElectraPretrainedModel): |
| 76 | + """ |
| 77 | + Electra Model with a linear layer on top of the hidden-states output |
| 78 | + layers for entity recognition, and a multi-head attention layer for |
| 79 | + relation classification. |
| 80 | +
|
| 81 | + Args: |
| 82 | + electra (:class:`ElectraModel`): |
| 83 | + An instance of ElectraModel. |
| 84 | + num_classes (int): |
| 85 | + The number of classes. |
| 86 | + dropout (float, optionl): |
| 87 | + The dropout probability for output of Electra. |
| 88 | + If None, use the same value as `hidden_dropout_prob' of 'ElectraModel` |
| 89 | + instance `electra`. Defaults to None. |
| 90 | + """ |
| 91 | + |
| 92 | + def __init__(self, electra, num_classes, dropout=None): |
| 93 | + super(ElectraForSPO, self).__init__() |
| 94 | + self.num_classes = num_classes |
| 95 | + self.electra = electra |
| 96 | + self.dropout = nn.Dropout(dropout if dropout is not None else |
| 97 | + self.electra.config['hidden_dropout_prob']) |
| 98 | + self.classifier = nn.Linear(self.electra.config['hidden_size'], 2) |
| 99 | + self.span_attention = MultiHeadAttentionForSPO( |
| 100 | + self.electra.config['hidden_size'], num_classes) |
| 101 | + self.sigmoid = paddle.nn.Sigmoid() |
| 102 | + |
| 103 | + def forward(self, |
| 104 | + input_ids=None, |
| 105 | + token_type_ids=None, |
| 106 | + position_ids=None, |
| 107 | + attention_mask=None): |
| 108 | + sequence_outputs, _, all_hidden_states = self.electra( |
| 109 | + input_ids, |
| 110 | + token_type_ids, |
| 111 | + position_ids, |
| 112 | + attention_mask, |
| 113 | + output_hidden_states=True) |
| 114 | + sequence_outputs = self.dropout(sequence_outputs) |
| 115 | + ent_logits = self.classifier(sequence_outputs) |
| 116 | + |
| 117 | + subject_output = all_hidden_states[-2] |
| 118 | + cls_output = paddle.unsqueeze(sequence_outputs[:, 0, :], axis=1) |
| 119 | + subject_output = subject_output + cls_output |
| 120 | + |
| 121 | + output_size = self.num_classes + self.electra.config['hidden_size'] |
| 122 | + rel_logits = self.span_attention(sequence_outputs, subject_output) |
| 123 | + |
| 124 | + ent_logits = self.sigmoid(ent_logits) |
| 125 | + rel_logits = self.sigmoid(rel_logits) |
| 126 | + |
| 127 | + return ent_logits, rel_logits |
0 commit comments