Replies: 4 comments
-
训练数据大概有多少条呢,是几卡训练的。可以尝试把loss再减小10倍。 |
Beta Was this translation helpful? Give feedback.
-
|
Beta Was this translation helpful? Give feedback.
-
文本长度较短,V4中有一些增广的策略可能在过短文本上不适用。可以尝试关闭: PaddleOCR/configs/rec/PP-OCRv4/en_PP-OCRv4_rec.yml Lines 102 to 115 in 0525f6b 修改: PaddleOCR/configs/rec/PP-OCRv4/en_PP-OCRv4_rec.yml Lines 73 to 78 in 0525f6b 为: PaddleOCR/configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml Lines 79 to 83 in 0525f6b |
Beta Was this translation helpful? Give feedback.
-
感谢回复,按照您说的,去掉sampler,并且将配置文件中的数据集改为simpledataset,还是训练几个step acc 变为0,loss变为nanxx,您看还有其他需要调整的地方吗? Global:
loader: |
Beta Was this translation helpful? Give feedback.
Uh oh!
There was an error while loading. Please reload this page.
Uh oh!
There was an error while loading. Please reload this page.
-
请提供下述完整信息以便快速定位问题/Please provide the following information to quickly locate the problem
我们提供了AceIssueSolver来帮助你解答问题,你是否想要它来解答(请填写yes/no)?/We provide AceIssueSolver to solve issues, do you want it? (Please write yes/no):yes
请尽量不要包含图片在问题中/Please try to not include the image in the issue.
D:\PYTHON\Anaconda3\envs\pd\python.exe D:\PYTHON\codes\PaddleOCR-release-2.7\train.py -c .\configs\rec\PP-OCRv4\en_PP-OCRv4_rec.yml -o Global.pretrained_model=./pre_train_models/en_PP-OCRv4_rec_train/best_accuracy
[2024/02/26 22:10:06] ppocr INFO: Architecture :
[2024/02/26 22:10:06] ppocr INFO: Backbone :
[2024/02/26 22:10:06] ppocr INFO: name : PPLCNetV3
[2024/02/26 22:10:06] ppocr INFO: scale : 0.95
[2024/02/26 22:10:06] ppocr INFO: Head :
[2024/02/26 22:10:06] ppocr INFO: head_list :
[2024/02/26 22:10:06] ppocr INFO: CTCHead :
[2024/02/26 22:10:06] ppocr INFO: Head :
[2024/02/26 22:10:06] ppocr INFO: fc_decay : 1e-05
[2024/02/26 22:10:06] ppocr INFO: Neck :
[2024/02/26 22:10:06] ppocr INFO: depth : 2
[2024/02/26 22:10:06] ppocr INFO: dims : 120
[2024/02/26 22:10:06] ppocr INFO: hidden_dims : 120
[2024/02/26 22:10:06] ppocr INFO: kernel_size : [1, 3]
[2024/02/26 22:10:06] ppocr INFO: name : svtr
[2024/02/26 22:10:06] ppocr INFO: use_guide : True
[2024/02/26 22:10:06] ppocr INFO: NRTRHead :
[2024/02/26 22:10:06] ppocr INFO: max_text_length : 10
[2024/02/26 22:10:06] ppocr INFO: nrtr_dim : 384
[2024/02/26 22:10:06] ppocr INFO: name : MultiHead
[2024/02/26 22:10:06] ppocr INFO: Transform : None
[2024/02/26 22:10:06] ppocr INFO: algorithm : SVTR_LCNet
[2024/02/26 22:10:06] ppocr INFO: model_type : rec
[2024/02/26 22:10:06] ppocr INFO: Eval :
[2024/02/26 22:10:06] ppocr INFO: dataset :
[2024/02/26 22:10:06] ppocr INFO: data_dir : D:\PYTHON\pictures
[2024/02/26 22:10:06] ppocr INFO: label_file_list : ['img\rec_eval.txt']
[2024/02/26 22:10:06] ppocr INFO: name : SimpleDataSet
[2024/02/26 22:10:06] ppocr INFO: transforms :
[2024/02/26 22:10:06] ppocr INFO: DecodeImage :
[2024/02/26 22:10:06] ppocr INFO: channel_first : False
[2024/02/26 22:10:06] ppocr INFO: img_mode : BGR
[2024/02/26 22:10:06] ppocr INFO: MultiLabelEncode :
[2024/02/26 22:10:06] ppocr INFO: gtc_encode : NRTRLabelEncode
[2024/02/26 22:10:06] ppocr INFO: RecResizeImg :
[2024/02/26 22:10:06] ppocr INFO: image_shape : [3, 48, 96]
[2024/02/26 22:10:06] ppocr INFO: KeepKeys :
[2024/02/26 22:10:06] ppocr INFO: keep_keys : ['image', 'label_ctc', 'label_gtc', 'length', 'valid_ratio']
[2024/02/26 22:10:06] ppocr INFO: loader :
[2024/02/26 22:10:06] ppocr INFO: batch_size_per_card : 128
[2024/02/26 22:10:06] ppocr INFO: drop_last : False
[2024/02/26 22:10:06] ppocr INFO: num_workers : 1
[2024/02/26 22:10:06] ppocr INFO: shuffle : False
[2024/02/26 22:10:06] ppocr INFO: Global :
[2024/02/26 22:10:06] ppocr INFO: cal_metric_during_train : True
[2024/02/26 22:10:06] ppocr INFO: character_dict_path : ppocr/utils/en_dict.txt
[2024/02/26 22:10:06] ppocr INFO: checkpoints : None
[2024/02/26 22:10:06] ppocr INFO: debug : False
[2024/02/26 22:10:06] ppocr INFO: distributed : False
[2024/02/26 22:10:06] ppocr INFO: epoch_num : 50
[2024/02/26 22:10:06] ppocr INFO: eval_batch_step : [0, 2000]
[2024/02/26 22:10:06] ppocr INFO: infer_img : doc/imgs_words/ch/word_1.jpg
[2024/02/26 22:10:06] ppocr INFO: infer_mode : False
[2024/02/26 22:10:06] ppocr INFO: log_smooth_window : 20
[2024/02/26 22:10:06] ppocr INFO: max_text_length : 10
[2024/02/26 22:10:06] ppocr INFO: pretrained_model : ./pre_train_models/en_PP-OCRv4_rec_train/best_accuracy
[2024/02/26 22:10:06] ppocr INFO: print_batch_step : 10
[2024/02/26 22:10:06] ppocr INFO: save_epoch_step : 10
[2024/02/26 22:10:06] ppocr INFO: save_inference_dir : None
[2024/02/26 22:10:06] ppocr INFO: save_model_dir : ./output/rec_ppocr_v4
[2024/02/26 22:10:06] ppocr INFO: save_res_path : ./output/rec/predicts_ppocrv3.txt
[2024/02/26 22:10:06] ppocr INFO: use_gpu : True
[2024/02/26 22:10:06] ppocr INFO: use_space_char : True
[2024/02/26 22:10:06] ppocr INFO: use_visualdl : False
[2024/02/26 22:10:06] ppocr INFO: Loss :
[2024/02/26 22:10:06] ppocr INFO: loss_config_list :
[2024/02/26 22:10:06] ppocr INFO: CTCLoss : None
[2024/02/26 22:10:06] ppocr INFO: NRTRLoss : None
[2024/02/26 22:10:06] ppocr INFO: name : MultiLoss
[2024/02/26 22:10:06] ppocr INFO: Metric :
[2024/02/26 22:10:06] ppocr INFO: ignore_space : False
[2024/02/26 22:10:06] ppocr INFO: main_indicator : acc
[2024/02/26 22:10:06] ppocr INFO: name : RecMetric
[2024/02/26 22:10:06] ppocr INFO: Optimizer :
[2024/02/26 22:10:06] ppocr INFO: beta1 : 0.9
[2024/02/26 22:10:06] ppocr INFO: beta2 : 0.999
[2024/02/26 22:10:06] ppocr INFO: lr :
[2024/02/26 22:10:06] ppocr INFO: learning_rate : 0.0005
[2024/02/26 22:10:06] ppocr INFO: name : Cosine
[2024/02/26 22:10:06] ppocr INFO: warmup_epoch : 5
[2024/02/26 22:10:06] ppocr INFO: name : Adam
[2024/02/26 22:10:06] ppocr INFO: regularizer :
[2024/02/26 22:10:06] ppocr INFO: factor : 3e-05
[2024/02/26 22:10:06] ppocr INFO: name : L2
[2024/02/26 22:10:06] ppocr INFO: PostProcess :
[2024/02/26 22:10:06] ppocr INFO: name : CTCLabelDecode
[2024/02/26 22:10:06] ppocr INFO: Train :
[2024/02/26 22:10:06] ppocr INFO: dataset :
[2024/02/26 22:10:06] ppocr INFO: data_dir : D:\PYTHON\pictures
[2024/02/26 22:10:06] ppocr INFO: ds_width : False
[2024/02/26 22:10:06] ppocr INFO: ext_op_transform_idx : 1
[2024/02/26 22:10:06] ppocr INFO: label_file_list : ['img\rec_train.txt']
[2024/02/26 22:10:06] ppocr INFO: name : MultiScaleDataSet
[2024/02/26 22:10:06] ppocr INFO: transforms :
[2024/02/26 22:10:06] ppocr INFO: DecodeImage :
[2024/02/26 22:10:06] ppocr INFO: channel_first : False
[2024/02/26 22:10:06] ppocr INFO: img_mode : BGR
[2024/02/26 22:10:06] ppocr INFO: RecConAug :
[2024/02/26 22:10:06] ppocr INFO: ext_data_num : 2
[2024/02/26 22:10:06] ppocr INFO: image_shape : [48, 96, 3]
[2024/02/26 22:10:06] ppocr INFO: max_text_length : 10
[2024/02/26 22:10:06] ppocr INFO: prob : 0.5
[2024/02/26 22:10:06] ppocr INFO: RecAug : None
[2024/02/26 22:10:06] ppocr INFO: MultiLabelEncode :
[2024/02/26 22:10:06] ppocr INFO: gtc_encode : NRTRLabelEncode
[2024/02/26 22:10:06] ppocr INFO: KeepKeys :
[2024/02/26 22:10:06] ppocr INFO: keep_keys : ['image', 'label_ctc', 'label_gtc', 'length', 'valid_ratio']
[2024/02/26 22:10:06] ppocr INFO: loader :
[2024/02/26 22:10:06] ppocr INFO: batch_size_per_card : 96
[2024/02/26 22:10:06] ppocr INFO: drop_last : True
[2024/02/26 22:10:06] ppocr INFO: num_workers : 1
[2024/02/26 22:10:06] ppocr INFO: shuffle : True
[2024/02/26 22:10:06] ppocr INFO: sampler :
[2024/02/26 22:10:06] ppocr INFO: divided_factor : [8, 16]
[2024/02/26 22:10:06] ppocr INFO: first_bs : 96
[2024/02/26 22:10:06] ppocr INFO: fix_bs : False
[2024/02/26 22:10:06] ppocr INFO: is_training : True
[2024/02/26 22:10:06] ppocr INFO: name : MultiScaleSampler
[2024/02/26 22:10:06] ppocr INFO: scales : [[96, 32], [96, 48], [96, 64]]
[2024/02/26 22:10:06] ppocr INFO: profiler_options : None
[2024/02/26 22:10:06] ppocr INFO: train with paddle 2.3.2 and device Place(gpu:0)
[2024/02/26 22:10:06] ppocr INFO: Initialize indexs of datasets:['img\rec_train.txt']
list index out of range
[2024/02/26 22:10:06] ppocr INFO: Initialize indexs of datasets:['img\rec_eval.txt']
W0226 22:10:07.103623 23948 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 8.6, Driver API Version: 11.7, Runtime API Version: 11.2
W0226 22:10:07.163653 23948 gpu_resources.cc:91] device: 0, cuDNN Version: 8.5.
INFO 2024-02-26 22:10:19,364 optimizer.py:162] If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. The weight_decay[3e-05] in Optimizer will not take effect, and it will only be applied to other Parameters!
[2024/02/26 22:10:19] ppocr INFO: train dataloader has 72 iters
[2024/02/26 22:10:19] ppocr INFO: valid dataloader has 10 iters
[2024/02/26 22:10:20] ppocr INFO: load pretrain successful from ./pre_train_models/en_PP-OCRv4_rec_train/best_accuracy
[2024/02/26 22:10:20] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 2000 iterations
[2024/02/26 22:10:43] ppocr INFO: epoch: [1/50], global_step: 10, lr: 0.000006, acc: 0.041667, norm_edit_dis: 0.264400, CTCLoss: 22.112082, NRTRLoss: 0.000000, loss: 21.547119, avg_reader_cost: 1.32500 s, avg_batch_cost: 2.37332 s, avg_samples: 76.8, ips: 32.35970 samples/s, eta: 2:22:00
[2024/02/26 22:10:56] ppocr INFO: epoch: [1/50], global_step: 20, lr: 0.000013, acc: 0.044271, norm_edit_dis: 0.263883, CTCLoss: 21.502228, NRTRLoss: 0.000000, loss: 21.449989, avg_reader_cost: 0.87371 s, avg_batch_cost: 1.30937 s, avg_samples: 72.0, ips: 54.98843 samples/s, eta: 1:49:52
[2024/02/26 22:11:06] ppocr INFO: epoch: [1/50], global_step: 30, lr: 0.000027, acc: 0.052083, norm_edit_dis: 0.269422, CTCLoss: 20.095638, NRTRLoss: 0.000000, loss: 20.095638, avg_reader_cost: 0.54818 s, avg_batch_cost: 0.96542 s, avg_samples: 70.4, ips: 72.92178 samples/s, eta: 1:32:11
[2024/02/26 22:11:13] ppocr INFO: epoch: [1/50], global_step: 40, lr: 0.000041, acc: 0.052083, norm_edit_dis: 0.286861, CTCLoss: 15.908986, NRTRLoss: 0.000000, loss: 16.115395, avg_reader_cost: 0.24486 s, avg_batch_cost: 0.67578 s, avg_samples: 65.6, ips: 97.07327 samples/s, eta: 1:18:58
[2024/02/26 22:11:18] ppocr INFO: epoch: [1/50], global_step: 50, lr: 0.000055, acc: 0.083333, norm_edit_dis: 0.339697, CTCLoss: 12.769976, NRTRLoss: 0.000000, loss: 12.738501, avg_reader_cost: 0.08555 s, avg_batch_cost: 0.54633 s, avg_samples: 60.8, ips: 111.28837 samples/s, eta: 1:09:27
[2024/02/26 22:11:23] ppocr INFO: epoch: [1/50], global_step: 60, lr: 0.000069, acc: 0.151042, norm_edit_dis: 0.416667, CTCLoss: 10.439315, NRTRLoss: 0.000000, loss: 10.450922, avg_reader_cost: 0.02620 s, avg_batch_cost: 0.48454 s, avg_samples: 64.0, ips: 132.08500 samples/s, eta: 1:02:29
[2024/02/26 22:11:28] ppocr INFO: epoch: [1/50], global_step: 70, lr: 0.000083, acc: 0.182292, norm_edit_dis: 0.438015, CTCLoss: 8.423864, NRTRLoss: 0.000000, loss: 8.423864, avg_reader_cost: 0.00480 s, avg_batch_cost: 0.47775 s, avg_samples: 73.6, ips: 154.05539 samples/s, eta: 0:57:25
[2024/02/26 22:11:29] ppocr INFO: save model in ./output/rec_ppocr_v4\latest
[2024/02/26 22:11:34] ppocr INFO: epoch: [2/50], global_step: 80, lr: 0.000097, acc: 0.231771, norm_edit_dis: 0.452865, CTCLoss: 7.541358, NRTRLoss: 0.000000, loss: 7.541358, avg_reader_cost: 0.06546 s, avg_batch_cost: 0.57578 s, avg_samples: 64.0, ips: 111.15327 samples/s, eta: 0:54:18
[2024/02/26 22:11:39] ppocr INFO: epoch: [2/50], global_step: 90, lr: 0.000110, acc: 0.234375, norm_edit_dis: 0.441927, CTCLoss: 7.055272, NRTRLoss: 0.000000, loss: 7.055272, avg_reader_cost: 0.00020 s, avg_batch_cost: 0.48734 s, avg_samples: 67.2, ips: 137.89159 samples/s, eta: 0:51:18
[2024/02/26 22:11:43] ppocr INFO: epoch: [2/50], global_step: 100, lr: 0.000124, acc: 0.250000, norm_edit_dis: 0.442758, CTCLoss: 6.601116, NRTRLoss: 0.000000, loss: 6.580836, avg_reader_cost: 0.00016 s, avg_batch_cost: 0.47722 s, avg_samples: 68.8, ips: 144.16936 samples/s, eta: 0:48:49
[2024/02/26 22:11:48] ppocr INFO: epoch: [2/50], global_step: 110, lr: 0.000138, acc: 0.250000, norm_edit_dis: 0.447743, CTCLoss: 6.323363, NRTRLoss: 0.000000, loss: 6.296344, avg_reader_cost: 0.00010 s, avg_batch_cost: 0.48471 s, avg_samples: 73.6, ips: 151.84265 samples/s, eta: 0:46:49
[2024/02/26 22:11:53] ppocr INFO: epoch: [2/50], global_step: 120, lr: 0.000152, acc: 0.250000, norm_edit_dis: 0.437240, CTCLoss: 6.173958, NRTRLoss: 0.000000, loss: 6.173958, avg_reader_cost: 0.00045 s, avg_batch_cost: 0.47134 s, avg_samples: 65.6, ips: 139.17896 samples/s, eta: 0:45:04
[2024/02/26 22:11:58] ppocr INFO: epoch: [2/50], global_step: 130, lr: 0.000166, acc: 0.276042, norm_edit_dis: 0.462761, CTCLoss: 5.208588, NRTRLoss: 0.000000, loss: 5.204882, avg_reader_cost: 0.00050 s, avg_batch_cost: 0.49596 s, avg_samples: 75.2, ips: 151.62433 samples/s, eta: 0:43:41
[2024/02/26 22:12:03] ppocr INFO: epoch: [2/50], global_step: 140, lr: 0.000180, acc: 0.286458, norm_edit_dis: 0.454948, CTCLoss: 5.117970, NRTRLoss: -0.000000, loss: 5.114107, avg_reader_cost: 0.00015 s, avg_batch_cost: 0.45830 s, avg_samples: 73.6, ips: 160.59267 samples/s, eta: 0:42:20
[2024/02/26 22:12:04] ppocr INFO: save model in ./output/rec_ppocr_v4\latest
[2024/02/26 22:12:08] ppocr INFO: epoch: [3/50], global_step: 150, lr: 0.000194, acc: 0.229167, norm_edit_dis: 0.407379, CTCLoss: 5.243576, NRTRLoss: 0.000000, loss: 5.243576, avg_reader_cost: 0.06199 s, avg_batch_cost: 0.57789 s, avg_samples: 73.6, ips: 127.36036 samples/s, eta: 0:41:36
[2024/02/26 22:12:13] ppocr INFO: epoch: [3/50], global_step: 160, lr: 0.000208, acc: 0.229167, norm_edit_dis: 0.414497, CTCLoss: 4.979708, NRTRLoss: 0.000000, loss: 4.993014, avg_reader_cost: 0.00000 s, avg_batch_cost: 0.46680 s, avg_samples: 68.8, ips: 147.38596 samples/s, eta: 0:40:34
[2024/02/26 22:12:18] ppocr INFO: epoch: [3/50], global_step: 170, lr: 0.000222, acc: 0.171875, norm_edit_dis: 0.334722, CTCLoss: nanxxx, NRTRLoss: nanxxx, loss: nanxxx, avg_reader_cost: 0.00010 s, avg_batch_cost: 0.48857 s, avg_samples: 68.8, ips: 140.82051 samples/s, eta: 0:39:42
[2024/02/26 22:12:23] ppocr INFO: epoch: [3/50], global_step: 180, lr: 0.000235, acc: 0.000000, norm_edit_dis: 0.000000, CTCLoss: nanxxx, NRTRLoss: nanxxx, loss: nanxxx, avg_reader_cost: 0.00010 s, avg_batch_cost: 0.48262 s, avg_samples: 70.4, ips: 145.87084 samples/s, eta: 0:38:55
[2024/02/26 22:12:27] ppocr INFO: epoch: [3/50], global_step: 190, lr: 0.000249, acc: 0.000000, norm_edit_dis: 0.000000, CTCLoss: nanxxx, NRTRLoss: nanxxx, loss: nanxxx, avg_reader_cost: 0.00025 s, avg_batch_cost: 0.47050 s, avg_samples: 76.8, ips: 163.23136 samples/s, eta: 0:38:10
[2024/02/26 22:12:32] ppocr INFO: epoch: [3/50], global_step: 200, lr: 0.000263, acc: 0.000000, norm_edit_dis: 0.000000, CTCLoss: nanxxx, NRTRLoss: nanxxx, loss: nanxxx, avg_reader_cost: 0.00025 s, avg_batch_cost: 0.48621 s, avg_samples: 64.0, ips: 131.63061 samples/s, eta: 0:37:32
[2024/02/26 22:12:37] ppocr INFO: epoch: [3/50], global_step: 210, lr: 0.000277, acc: 0.000000, norm_edit_dis: 0.000000, CTCLoss: nanxxx, NRTRLoss: nanxxx, loss: nanxxx, avg_reader_cost: 0.00025 s, avg_batch_cost: 0.46303 s, avg_samples: 68.8, ips: 148.58720 samples/s, eta: 0:36:53
[2024/02/26 22:12:38] ppocr INFO: save model in ./output/rec_ppocr_v4\latest
[2024/02/26 22:12:42] ppocr INFO: epoch: [4/50], global_step: 220, lr: 0.000291, acc: 0.000000, norm_edit_dis: 0.000000, CTCLoss: nanxxx, NRTRLoss: nanxxx, loss: nanxxx, avg_reader_cost: 0.05028 s, avg_batch_cost: 0.52260 s, avg_samples: 59.2, ips: 113.27984 samples/s, eta: 0:36:26
[2024/02/26 22:12:47] ppocr INFO: epoch: [4/50], global_step: 230, lr: 0.000305, acc: 0.000000, norm_edit_dis: 0.000000, CTCLoss: nanxxx, NRTRLoss: nanxxx, loss: nanxxx, avg_reader_cost: 0.00030 s, avg_batch_cost: 0.48810 s, avg_samples: 68.8, ips: 140.95372 samples/s, eta: 0:35:56
[2024/02/26 22:12:52] ppocr INFO: epoch: [4/50], global_step: 240, lr: 0.000319, acc: 0.000000, norm_edit_dis: 0.000000, CTCLoss: nanxxx, NRTRLoss: nanxxx, loss: nanxxx, avg_reader_cost: 0.00036 s, avg_batch_cost: 0.47478 s, avg_samples: 67.2, ips: 141.53904 samples/s, eta: 0:35:26
Process finished with exit code -1073741510 (0xC000013A: interrupted by Ctrl+C)
Beta Was this translation helpful? Give feedback.
All reactions