Replies: 1 comment
-
The error message ExplanationThe In your configuration: label_file_list:
D:/ancoda/anocada3/envs/paddle/Lib/site-packages/train_data/det/train.txt
ratio_list: [1.0] Here, the
Steps to Fix the Error
Additional Notes
By properly aligning the lengths of Response generated by feifei-bot | chatgpt-4o-latest |
Beta Was this translation helpful? Give feedback.
Uh oh!
There was an error while loading. Please reload this page.
-
🔎 Search before asking
🐛 Bug (问题描述)
Traceback (most recent call last):
File "D:\PaddleOCR-main\tools\train.py", line 269, in
main(config, device, logger, vdl_writer, seed)
File "D:\PaddleOCR-main\tools\train.py", line 55, in main
train_dataloader = build_dataloader(config, "Train", device, logger, seed)
File "D:\PaddleOCR-main\ppocr\data_init_.py", line 107, in build_dataloader
dataset = eval(module_name)(config, mode, logger, seed)
File "D:\PaddleOCR-main\ppocr\data\simple_dataset.py", line 42, in init
assert (
AssertionError: The length of ratio_list should be the same as the file_list.
🏃♂️ Environment (运行环境)
python 3.10
🌰 Minimal Reproducible Example (最小可复现问题的Demo)
配置文件如图
Global:
use_gpu: false
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/ch_db_res18/
save_epoch_step: 1200
evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [3000, 2000]
cal_metric_during_train: False
pretrained_model: D:\ancoda\anocada3\envs\paddle\Lib\site-packages\Preliminary_training\ch_ppocr_server_v2.0_det_train\best_accuracy.pdparams
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Architecture:
model_type: detc
algorithm: DB
Transform:
Backbone:
name: ResNet_vd
layers: 18
disable_se: True
Neck:
name: DBFPN
out_channels: 256
Head:
name: DBHead
k: 50
Loss:
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 2
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: D:\ancoda\anocada3\envs\paddle\Lib\site-packages\train_data\det\train
label_file_list:
D:/ancoda/anocada3/envs/paddle/Lib/site-packages/train_data/det/train.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
- { 'type': Resize, 'args': { 'size': [0.5, 3] } }
- EastRandomCropData:
size: [960, 960]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: D:\ancoda\anocada3\envs\paddle\Lib\site-packages\train_data\det\val
label_file_list:
D:/ancoda/anocada3/envs/paddle/Lib/site-packages/train_data/det/val.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
image_shape: [736, 1280]
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2
Beta Was this translation helpful? Give feedback.
All reactions