对检测模型db加了一个输出用于分类,怎么将这层输出出来 #14643
Unanswered
wangsssjjj
asked this question in
Q&A
Replies: 1 comment
-
在DB模型的基础上添加一个用于分类的输出后,你需要确保该输出层在推理时能够被正确获取。以下是实现此功能的关键步骤: 1. 确保模型结构包含额外的分类输出你需要在DB模型的基础上修改 class CustomDBModel(DBModel):
def __init__(self, backbone, neck, head, num_classes):
super(CustomDBModel, self).__init__(backbone, neck, head)
self.classifier = nn.Linear(in_features=..., out_features=num_classes)
def forward(self, x):
feature_maps = super().forward(x)
classification_output = self.classifier(feature_maps) # 假设 feature_maps 是合适的输入
return feature_maps, classification_output 2. 修改推理代码以输出分类结果在推理代码中,你需要确保能够正确获取分类层的输出。例如,在 PaddleOCR 推理代码中修改 model_output = model(image)
det_output, class_output = model_output # 获取检测和分类输出 3. 调试与可视化输出如果需要查看分类输出,可以使用 print(f"Detection Output: {det_output.shape}")
print(f"Classification Output: {class_output.shape}") 如果是可视化分类结果,可以使用 import matplotlib.pyplot as plt
plt.imshow(det_output[0].cpu().detach().numpy()) # 显示检测结果
plt.title(f"Predicted Class: {class_output.argmax(dim=1).item()}")
plt.show() 4. 确保模型导出时包含该输出如果你计划导出模型用于部署,请确保 paddle.jit.save(model, "custom_db_model", input_spec=[paddle.static.InputSpec(shape=[None, 3, H, W], dtype='float32')]) 这样,推理时也能正确获取分类输出。 如果你遇到进一步的问题,可以参考 PaddleOCR 的相关讨论,或者提供更详细的代码和报错信息进一步分析。 Response generated by feifei-bot | chatgpt-4o-latest |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
Beta Was this translation helpful? Give feedback.
All reactions