Replies: 1 comment
-
以下是完整的 Python 代码,可以在训练识别(rec)模型时对训练图像进行 高斯模糊、运动模糊、低分辨率缩放 以及 对抗性训练 进行数据增强: import cv2
import numpy as np
import random
import torch
import torch.nn.functional as F
# 高斯模糊
def apply_gaussian_blur(image):
kernel_size = random.choice([3, 5, 7]) # 随机选择核大小
return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0)
# 运动模糊
def apply_motion_blur(image):
size = random.choice([3, 5, 7]) # 运动模糊核大小
kernel = np.zeros((size, size))
xs, ys = np.random.choice(size, 2) # 随机选择模糊方向
kernel[xs, :] = 1
kernel /= size
return cv2.filter2D(image, -1, kernel)
# 低分辨率缩放
def apply_low_resolution(image):
scale_factor = random.uniform(0.5, 0.8) # 随机缩小比例
h, w = image.shape[:2]
new_w, new_h = int(w * scale_factor), int(h * scale_factor)
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
return cv2.resize(image, (w, h), interpolation=cv2.INTER_NEAREST)
# 对抗性训练(FGSM攻击)
def fgsm_attack(image_tensor, epsilon, gradient):
""" FGSM 对抗样本攻击 """
sign_grad = gradient.sign()
perturbed_image = image_tensor + epsilon * sign_grad
return torch.clamp(perturbed_image, 0, 1) # 限制像素值范围
# 训练数据增强流程
def augment_image(image):
""" 对图像应用一系列增强操作 """
if random.random() < 0.3:
image = apply_gaussian_blur(image)
if random.random() < 0.3:
image = apply_motion_blur(image)
if random.random() < 0.3:
image = apply_low_resolution(image)
return image
# 示例:对抗性训练示例
def adversarial_training(model, image_tensor, label, epsilon=0.03):
""" 生成对抗性样本并训练模型 """
image_tensor.requires_grad = True
output = model(image_tensor)
loss = F.cross_entropy(output, label)
loss.backward()
adv_image = fgsm_attack(image_tensor, epsilon, image_tensor.grad)
return adv_image
# 示例代码:应用增强
if __name__ == "__main__":
image = cv2.imread("example.jpg") # 读取训练图像
image = augment_image(image) # 应用数据增强
cv2.imwrite("augmented_example.jpg", image) # 保存增强后的图像
# 假设有一个训练模型(仅示意)
class DummyModel(torch.nn.Module):
def forward(self, x):
return torch.randn((1, 10), requires_grad=True)
model = DummyModel()
image_tensor = torch.randn((1, 3, 32, 32), requires_grad=True) # 伪造的输入图像
label = torch.tensor([1]) # 假设的标签
adv_image = adversarial_training(model, image_tensor, label) 代码说明:
适用场景:
你可以将这些方法集成到 PaddleOCR 训练流程中,在 Response generated by feifei-bot | chatgpt-4o-latest |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
rec模型训练时,将训练图进行高斯模糊、运动模糊、低分辨率缩放 以及 对抗性训练等增强 的完整python代码
Beta Was this translation helpful? Give feedback.
All reactions