Could anyone explain YML parameter to me or where can I find the explain page? #14680
Unanswered
felixho789
asked this question in
Q&A
Replies: 1 comment
-
YAML (YML) is a human-readable data serialization format commonly used for configuration files. In the provided YML code, parameters are structured hierarchically to define various aspects of a machine learning model training process. Here’s a breakdown of key elements: Key Components of the YML File:
Where to Find More Information?
Let me know if you need further clarification! 😊 Response generated by feifei-bot | chatgpt-4o-latest |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
Could anyone explain YML parameter to me or where can I find the explain page?
Following is an yml code:
Global:
debug: false
use_gpu: true
epoch_num: &epoch_num 1000
log_smooth_window: 20
print_batch_step: 1
save_model_dir: ./output/DET
save_epoch_step: 500
eval_batch_step:
cal_metric_during_train: false
checkpoints:
pretrained_model: /MODEL/DET/ch_PP-OCRv4_det_server_train/best_accuracy.pdparams
save_inference_dir: null
use_visualdl: false
infer_img: C:\Program Files\Python310\Lib\site-packages\paddleocr\DATASET
save_res_path: ./checkpoints/det_db/predicts_db.txt
d2s_train_image_shape: [3, 96, 320]
distributed: true
Architecture:
model_type: det
algorithm: DB
Transform: null
Backbone:
name: PPHGNet_small
det: True
Neck:
name: LKPAN
out_channels: 256
intracl: true
Head:
name: PFHeadLocal
k: 50
mode: "large"
fix_nan: True
Loss:
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001 #(8*8c)
warmup_epoch: 2
regularizer:
name: L2
factor: 1e-6
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: C:\Program Files\Python310\Lib\site-packages\paddleocr\DATASET
label_file_list:
- C:\Program Files\Python310\Lib\site-packages\paddleocr\DATASET\Label.txt
ratio_list: [1.0]
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- DetLabelEncode: null
- CopyPaste: null
- IaaAugment:
augmenter_args:
- type: Fliplr
args:
p: 0.5
- type: Affine
args:
rotate:
- -10
- 10
- type: Resize
args:
size:
- 0.5
- 3
- EastRandomCropData:
size:
- 74
- 246
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
total_epoch: *epoch_num
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
total_epoch: *epoch_num
- NormalizeImage:
scale: 1./255.
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
order: hwc
- ToCHWImage: null
- KeepKeys:
keep_keys:
- image
- threshold_map
- threshold_mask
- shrink_map
- shrink_mask
loader:
shuffle: true
drop_last: false
batch_size_per_card: 12
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: C:\Program Files\Python310\Lib\site-packages\paddleocr\DATASET
label_file_list:
- C:\Program Files\Python310\Lib\site-packages\paddleocr\DATASET\Label.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- DetLabelEncode: null
- DetResizeForTest:
- NormalizeImage:
scale: 1./255.
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
order: hwc
- ToCHWImage: null
- KeepKeys:
keep_keys:
- image
- shape
- polys
- ignore_tags
loader:
shuffle: false
drop_last: false
batch_size_per_card: 1
num_workers: 2
profiler_options: null
Beta Was this translation helpful? Give feedback.
All reactions