End-to-End训练自定义数据集总是报错 #14684
Unanswered
Jerry200404
asked this question in
Q&A
Replies: 1 comment 1 reply
-
你的 End-to-End 训练报错可能与数据格式、数据读取逻辑或 PaddleOCR 代码适配有关。以下是一些可能的原因以及对应的解决方案: 1. 确保 JSON 标注格式正确你的 JSON 标注格式如下: {
"image": "images/0_0/lhr_0_1000_01184616.jpg",
"annotations": [
{
"polygon": [0.58, 0.72, 0.86, 0.72, 0.86, 0.96, 0.58, 0.96],
"label": "воссоздать",
"type": "printed"
},
{
"polygon": [0.12, 0.35, 0.46, 0.35, 0.46, 0.62, 0.12, 0.62],
"label": "коммунизм",
"type": "handwriting"
}
]
} 请确保:
2. 检查
|
Beta Was this translation helpful? Give feedback.
1 reply
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
Uh oh!
There was an error while loading. Please reload this page.
-
目的:1.使用 JSON 格式标注,并在 type 字段区分 手写体 和 印刷体,以达到分类效果。
2.训练检测模型,使用 polygon 标注 单词位置,然后传入识别模型,所以采用End-to-End。
俄语数据集文件目录结构
PP-OCRv4-dataset/
├── train/
│ ├── annotations/
│ │ ├── 0_0.json
│ │ ├── 0_1.json
│ │ ├── 0_2.json
│ ├── images/
│ │ ├── 0_0/
│ │ │ ├── img1.jpg
│ │ │ ├── img2.jpg
│ │ ├── 0_1/
│ │ │ ├── img3.jpg
│ │ │ ├── img4.jpg
test同理未列出
json文件内部数据格式:
{
"image": "images/0_0/lhr_0_1000_01184616.jpg",
"annotations": [
{
"polygon": [0.58, 0.72, 0.86, 0.72, 0.86, 0.96, 0.58, 0.96],
"label": "воссоздать",
"type": "printed"
},
{
"polygon": [0.12, 0.35, 0.46, 0.35, 0.46, 0.62, 0.12, 0.62],
"label": "коммунизм",
"type": "handwriting"
}
]
}
修改了e2e_r50_vd_pg.yml配置文件:
`Global:
use_gpu: True
epoch_num: 600
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/pgnet_r50_vd_totaltext/
save_epoch_step: 10
evaluation is run every 0 iterationss after the 1000th iteration
eval_batch_step: [ 0, 1000 ]
cal_metric_during_train: False
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
infer_visual_type: RU # two mode: EN is for english datasets, CN is for chinese datasets
valid_set: totaltext # two mode: totaltext valid curved words, partvgg valid non-curved words
save_res_path: ./output/pgnet_r50_vd_totaltext/predicts_pgnet.txt
character_dict_path: ppocr/utils/dict/cyrillic_dict.txt
character_type: RU
max_text_length: 50 # the max length in seq
max_text_nums: 30 # the max seq nums in a pic
tcl_len: 64
Architecture:
model_type: e2e
algorithm: PGNet
Transform:
Backbone:
name: ResNet
layers: 50
Neck:
name: PGFPN
Head:
name: PGHead
character_dict_path: ppocr/utils/dict/cyrillic_dict.txt # the same as Global:character_dict_path
Loss:
name: PGLoss
tcl_bs: 64
max_text_length: 50 # the same as Global: max_text_length
max_text_nums: 30 # the same as Global:max_text_nums
pad_num: 36 # the length of dict for pad
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 50
regularizer:
name: 'L2'
factor: 0.0001
PostProcess:
name: PGPostProcess
score_thresh: 0.5
mode: fast # fast or slow two ways
point_gather_mode: align # same as PGProcessTrain: point_gather_mode
Metric:
name: E2EMetric
mode: A # two ways for eval, A: label from txt, B: label from gt_mat
gt_mat_dir: ./train_data/total_text/gt # the dir of gt_mat
character_dict_path: ppocr/utils/dict/cyrillic_dict.txt
main_indicator: f_score_e2e
Train:
dataset:
name: SimpleDataSet #PGDataSet
data_dir: ./PP-OCRv4-dataset/train/
label_file_list: ["annotations/*.json"]
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- E2ELabelEncodeTrain:
- PGProcessTrain:
batch_size: 14 # same as loader: batch_size_per_card
use_resize: True
use_random_crop: False
min_crop_size: 24
min_text_size: 4
max_text_size: 512
point_gather_mode: align # two mode: align and none, align mode is better than none mode
- KeepKeys:
keep_keys: [ 'images', 'tcl_maps', 'tcl_label_maps', 'border_maps','direction_maps', 'training_masks', 'label_list', 'pos_list', 'pos_mask' ] # dataloader will return list in this order
loader:
shuffle: True
drop_last: True
batch_size_per_card: 14
num_workers: 16
Eval:
dataset:
name: SimpleDataSet
data_dir: ./PP-OCRv4-dataset/test/
label_file_list: ["annotations/*.json"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- E2ELabelEncodeTest:
- E2EResizeForTest:
max_side_len: 768
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'shape', 'polys', 'texts', 'ignore_tags', 'img_id']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2
修改了SimpleDataSet用来加载数据:
class SimpleDataSet(Dataset):def init(self, config, mode, logger, seed=None):
super(SimpleDataSet, self).init()
self.logger = logger
self.mode = mode.lower()
终端执行命令:
python tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml
训练报错:
训练报错信息.txt
报错部分信息:
PS D:\PP-OCR\PaddleOCR> python tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml
[2025/02/14 20:10:35] ppocr INFO: Architecture :
[2025/02/14 20:10:35] ppocr INFO: Backbone :
[2025/02/14 20:10:35] ppocr INFO: layers : 50
[2025/02/14 20:10:35] ppocr INFO: name : ResNet
[2025/02/14 20:10:35] ppocr INFO: Head :
[2025/02/14 20:10:35] ppocr INFO: character_dict_path : ppocr/utils/dict/cyrillic_dict.txt
[2025/02/14 20:10:35] ppocr INFO: name : PGHead
[2025/02/14 20:10:35] ppocr INFO: Neck :
[2025/02/14 20:10:35] ppocr INFO: name : PGFPN
[2025/02/14 20:10:35] ppocr INFO: Transform : None
[2025/02/14 20:10:35] ppocr INFO: algorithm : PGNet
[2025/02/14 20:10:35] ppocr INFO: model_type : e2e
[2025/02/14 20:10:35] ppocr INFO: Eval :
[2025/02/14 20:10:35] ppocr INFO: dataset :
[2025/02/14 20:10:35] ppocr INFO: data_dir : ./PP-OCRv4-dataset/test/
[2025/02/14 20:10:35] ppocr INFO: label_file_list : ['annotations/.json']
[2025/02/14 20:10:35] ppocr INFO: name : SimpleDataSet
[2025/02/14 20:10:35] ppocr INFO: transforms :
[2025/02/14 20:10:35] ppocr INFO: DecodeImage :
[2025/02/14 20:10:35] ppocr INFO: channel_first : False
[2025/02/14 20:10:35] ppocr INFO: img_mode : BGR
[2025/02/14 20:10:35] ppocr INFO: E2ELabelEncodeTest : None
[2025/02/14 20:10:35] ppocr INFO: E2EResizeForTest :
[2025/02/14 20:10:35] ppocr INFO: max_side_len : 768
[2025/02/14 20:10:35] ppocr INFO: NormalizeImage :
[2025/02/14 20:10:35] ppocr INFO: mean : [0.485, 0.456, 0.406]
[2025/02/14 20:10:35] ppocr INFO: order : hwc
[2025/02/14 20:10:35] ppocr INFO: scale : 1./255.
[2025/02/14 20:10:35] ppocr INFO: std : [0.229, 0.224, 0.225]
[2025/02/14 20:10:35] ppocr INFO: ToCHWImage : None
[2025/02/14 20:10:35] ppocr INFO: KeepKeys :
[2025/02/14 20:10:35] ppocr INFO: keep_keys : ['image', 'shape', 'polys', 'texts', 'ignore_tags', 'img_id']
[2025/02/14 20:10:35] ppocr INFO: loader :
[2025/02/14 20:10:35] ppocr INFO: batch_size_per_card : 1
[2025/02/14 20:10:35] ppocr INFO: drop_last : False
[2025/02/14 20:10:35] ppocr INFO: num_workers : 2
[2025/02/14 20:10:35] ppocr INFO: shuffle : False
[2025/02/14 20:10:35] ppocr INFO: Global :
[2025/02/14 20:10:35] ppocr INFO: cal_metric_during_train : False
[2025/02/14 20:10:35] ppocr INFO: character_dict_path : ppocr/utils/dict/cyrillic_dict.txt
[2025/02/14 20:10:35] ppocr INFO: character_type : RU
[2025/02/14 20:10:35] ppocr INFO: checkpoints : None
[2025/02/14 20:10:35] ppocr INFO: distributed : False
[2025/02/14 20:10:35] ppocr INFO: epoch_num : 600
[2025/02/14 20:10:35] ppocr INFO: eval_batch_step : [0, 1000]
[2025/02/14 20:10:35] ppocr INFO: infer_img : None
[2025/02/14 20:10:35] ppocr INFO: infer_visual_type : RU
[2025/02/14 20:10:35] ppocr INFO: log_smooth_window : 20
[2025/02/14 20:10:35] ppocr INFO: max_text_length : 50
[2025/02/14 20:10:35] ppocr INFO: max_text_nums : 30
[2025/02/14 20:10:35] ppocr INFO: pretrained_model : None
[2025/02/14 20:10:35] ppocr INFO: print_batch_step : 10
[2025/02/14 20:10:35] ppocr INFO: save_epoch_step : 10
[2025/02/14 20:10:35] ppocr INFO: save_inference_dir : None
[2025/02/14 20:10:35] ppocr INFO: save_model_dir : ./output/pgnet_r50_vd_totaltext/
[2025/02/14 20:10:35] ppocr INFO: save_res_path : ./output/pgnet_r50_vd_totaltext/predicts_pgnet.txt
[2025/02/14 20:10:35] ppocr INFO: tcl_len : 64
[2025/02/14 20:10:35] ppocr INFO: use_gpu : True
[2025/02/14 20:10:35] ppocr INFO: use_visualdl : False
[2025/02/14 20:10:35] ppocr INFO: valid_set : totaltext
[2025/02/14 20:10:35] ppocr INFO: Loss :
[2025/02/14 20:10:35] ppocr INFO: max_text_length : 50
[2025/02/14 20:10:35] ppocr INFO: max_text_nums : 30
[2025/02/14 20:10:35] ppocr INFO: name : PGLoss
[2025/02/14 20:10:35] ppocr INFO: pad_num : 36
[2025/02/14 20:10:35] ppocr INFO: tcl_bs : 64
[2025/02/14 20:10:35] ppocr INFO: Metric :
[2025/02/14 20:10:35] ppocr INFO: character_dict_path : ppocr/utils/dict/cyrillic_dict.txt
[2025/02/14 20:10:35] ppocr INFO: gt_mat_dir : ./train_data/total_text/gt
[2025/02/14 20:10:35] ppocr INFO: main_indicator : f_score_e2e
[2025/02/14 20:10:35] ppocr INFO: mode : A
[2025/02/14 20:10:35] ppocr INFO: name : E2EMetric
[2025/02/14 20:10:35] ppocr INFO: Optimizer :
[2025/02/14 20:10:35] ppocr INFO: beta1 : 0.9
[2025/02/14 20:10:35] ppocr INFO: beta2 : 0.999
[2025/02/14 20:10:35] ppocr INFO: lr :
[2025/02/14 20:10:35] ppocr INFO: learning_rate : 0.001
[2025/02/14 20:10:35] ppocr INFO: name : Cosine
[2025/02/14 20:10:35] ppocr INFO: warmup_epoch : 50
[2025/02/14 20:10:35] ppocr INFO: name : Adam
[2025/02/14 20:10:35] ppocr INFO: regularizer :
[2025/02/14 20:10:35] ppocr INFO: factor : 0.0001
[2025/02/14 20:10:35] ppocr INFO: name : L2
[2025/02/14 20:10:35] ppocr INFO: PostProcess :
[2025/02/14 20:10:35] ppocr INFO: mode : fast
[2025/02/14 20:10:35] ppocr INFO: name : PGPostProcess
[2025/02/14 20:10:35] ppocr INFO: point_gather_mode : align
[2025/02/14 20:10:35] ppocr INFO: score_thresh : 0.5
[2025/02/14 20:10:35] ppocr INFO: Train :
[2025/02/14 20:10:35] ppocr INFO: dataset :
[2025/02/14 20:10:35] ppocr INFO: data_dir : ./PP-OCRv4-dataset/train/
[2025/02/14 20:10:35] ppocr INFO: label_file_list : ['annotations/.json']
[2025/02/14 20:10:35] ppocr INFO: name : SimpleDataSet
[2025/02/14 20:10:35] ppocr INFO: ratio_list : [1.0]
[2025/02/14 20:10:35] ppocr INFO: transforms :
[2025/02/14 20:10:35] ppocr INFO: DecodeImage :
[2025/02/14 20:10:35] ppocr INFO: channel_first : False
[2025/02/14 20:10:35] ppocr INFO: img_mode : BGR
[2025/02/14 20:10:35] ppocr INFO: E2ELabelEncodeTrain : None
[2025/02/14 20:10:35] ppocr INFO: PGProcessTrain :
[2025/02/14 20:10:35] ppocr INFO: batch_size : 14
[2025/02/14 20:10:35] ppocr INFO: max_text_size : 512
[2025/02/14 20:10:35] ppocr INFO: min_crop_size : 24
[2025/02/14 20:10:35] ppocr INFO: min_text_size : 4
[2025/02/14 20:10:35] ppocr INFO: point_gather_mode : align
[2025/02/14 20:10:35] ppocr INFO: use_random_crop : False
[2025/02/14 20:10:35] ppocr INFO: use_resize : True
[2025/02/14 20:10:35] ppocr INFO: KeepKeys :
[2025/02/14 20:10:35] ppocr INFO: keep_keys : ['images', 'tcl_maps', 'tcl_label_maps', 'border_maps', 'direction_maps', 'training_masks', 'label_list', 'pos_list', 'pos_mask']
[2025/02/14 20:10:35] ppocr INFO: loader :
[2025/02/14 20:10:35] ppocr INFO: batch_size_per_card : 14
[2025/02/14 20:10:35] ppocr INFO: drop_last : True
[2025/02/14 20:10:35] ppocr INFO: num_workers : 16
[2025/02/14 20:10:35] ppocr INFO: shuffle : True
[2025/02/14 20:10:35] ppocr INFO: profiler_options : None
[2025/02/14 20:10:35] ppocr INFO: train with paddle 2.5.0 and device Place(gpu:0)
[2025/02/14 20:10:35] ppocr INFO: Initialize indexs of datasets: ['annotations/.json']
[2025/02/14 20:10:35] ppocr INFO: Using ratio list: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1
.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
[2025/02/14 20:12:56] ppocr INFO: Initialize indexs of datasets: ['annotations/.json']
[2025/02/14 20:12:56] ppocr INFO: Using ratio list: [1.0, 1.0, 1.0, 1.0, 1.0]
W0214 20:13:07.647279 11556 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 8.6, Driver API Version: 12.4, Runtime API Version: 11.2
W0214 20:13:07.656876 11556 gpu_resources.cc:149] device: 0, cuDNN Version: 8.2.
[2025/02/14 20:13:09] ppocr INFO: train dataloader has 60863 iters
[2025/02/14 20:13:09] ppocr INFO: valid dataloader has 48609 iters
[2025/02/14 20:13:09] ppocr INFO: train from scratch
[2025/02/14 20:13:09] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 1000 iterations
[2025/02/14 20:13:10] ppocr ERROR: Error occurred while parsing {'image': './PP-OCRv4-dataset/train/images/0_0/lhr_0_1031_01222220.jpg', 'annotation
s': [{'polygon': [0.6309315762778586, 0.112991563975811, 0.9336465525072675, 0.112991563975811, 0.9336465525072675, 0.35180094838142395, 0.6309315762
778586, 0.35180094838142395], 'label': 'выругаться:', 'type': 'printed'}, {'polygon': [0.2567337627558745, 0.09653285890817642, 0.5012350392896076, 0
.09653285890817642, 0.5012350392896076, 0.3742563724517822, 0.2567337627558745, 0.3742563724517822], 'label': 'порыжеть 52772 аська клин', 'type': 'printed'}]}: 'label'
[2025/02/14 20:13:10] ppocr ERROR: Error occurred while parsing {'image': './PP-OCRv4-dataset/train/images/3_4/lhr_14_105_00125080.jpg', 'annotation
s': [{'polygon': [0.7503180503845215, 0.16061107317606607, 0.9845978021621704, 0.16061107317606607, 0.9845978021621704, 0.2652724186579386, 0.7503180503845215, 0.2652724186579386], 'label': 'Пудовкин', 'type': 'printed'}]}: 'label'
[2025/02/14 20:13:10] ppocr ERROR: Error occurred while parsing {'image': './PP-OCRv4-dataset/train/images/0_11/lhr_0_863_01022641.jpg', 'annotation
s': [{'polygon': [0.6674890887492881, 0.3044753074645996, 0.8171328325206435, 0.3044753074645996, 0.8171328325206435, 0.4398674964904785, 0.667489088
7492881, 0.4398674964904785], 'label': '33392', 'type': 'printed'}, {'polygon': [0.1588311510368469, 0.6093335151672363, 0.4043034095155894, 0.609333
5151672363, 0.4043034095155894, 0.8614568710327148, 0.1588311510368469, 0.8614568710327148], 'label': 'Опарина', 'type': 'printed'}, {'polygon': [0.4
107921834958713, 0.11213694512844086, 0.8656021152922124, 0.11213694512844086, 0.8656021152922124, 0.1796937733888626, 0.4107921834958713, 0.1796937733888626], 'label': 'механик-водитель убито', 'type': 'printed'}]}: 'label'
[2025/02/14 20:13:10] ppocr ERROR: Error occurred while parsing {'image': './PP-OCRv4-dataset/train/images/3_11/lhr_14_583_00691978.jpg', 'annotatio
ns': [{'polygon': [0.46629227299393317, 0.13498879969120026, 0.6020812317565247, 0.13498879969120026, 0.6020812317565247, 0.20145283639431, 0.4662922
7299393317, 0.20145283639431], 'label': 'завал(', 'type': 'printed'}, {'polygon': [0.3372459998497596, 0.8440180420875549, 0.47964564732142856, 0.844
0180420875549, 0.47964564732142856, 0.9436938166618347, 0.3372459998497596, 0.9436938166618347], 'label': 'мимо', 'type': 'printed'}, {'polygon': [0.
13667473985161974, 0.058924391865730286, 0.3344984117445055, 0.058924391865730286, 0.3344984117445055, 0.2594873905181885, 0.13667473985161974, 0.259
4873905181885], 'label': 'паевой внучка', 'type': 'printed'}, {'polygon': [0.8113468156192766, 0.23607280850410461, 0.9859493940304487, 0.23607280850
410461, 0.9859493940304487, 0.32600390911102295, 0.8113468156192766, 0.32600390911102295], 'label': 'толь пуща?', 'type': 'printed'}, {'polygon': [0.
47886332417582417, 0.4006194472312927, 0.6169260996165293, 0.4006194472312927, 0.6169260996165293, 0.5093043446540833, 0.47886332417582417, 0.5093043446540833], 'label': 'сбор', 'type': 'printed'}]}: 'label'
[2025/02/14 20:13:10] ppocr ERROR: Error occurred while parsing {'image': './PP-OCRv4-dataset/train/images/0_6/lhr_0_483_00572287.jpg', 'annotations
': [{'polygon': [0.7631299495697021, 0.014552081003785133, 0.946108897527059, 0.014552081003785133, 0.946108897527059, 0.16532450914382935, 0.7631299
495697021, 0.16532450914382935], 'label': 'опала-', 'type': 'printed'}, {'polygon': [0.8193318843841553, 0.8379898071289062, 0.9338462352752686, 0.83
79898071289062, 0.9338462352752686, 0.9534388780593872, 0.8193318843841553, 0.9534388780593872], 'label': 'угор', 'type': 'printed'}, {'polygon': [0.
04705489675203959, 0.15078163146972656, 0.45191915829976403, 0.15078163146972656, 0.45191915829976403, 0.20002660155296326, 0.04705489675203959, 0.20002660155296326], 'label': 'запланировать', 'type': 'printed'}]}: 'label'
[2025/02/14 20:13:10] ppocr ERROR: Error occurred while parsing {'image': './PP-OCRv4-dataset/train/images/3_17/lhr_15_119_00151731.jpg', 'annotatio
ns': [{'polygon': [0.3565429449081421, 0.7976653083922371, 0.8192929029464722, 0.7976653083922371, 0.8192929029464722, 0.9405352880084326, 0.3565429449081421, 0.9405352880084326], 'label': 'завыть 9453424154 сходни Матюшенко неослабевающий', 'type': 'printed'}]}: 'label'
[2025/02/14 20:13:10] ppocr ERROR: Error occurred while parsing {'image': './PP-OCRv4-dataset/train/images/3_9/lhr_14_451_00535562.jpg', 'annotation
s': [{'polygon': [0.10880836844444275, 0.2425532341003418, 0.4100768268108368, 0.2425532341003418, 0.4100768268108368, 0.29829275608062744, 0.10880836844444275, 0.29829275608062744], 'label': 'проторить', 'type': 'printed'}]}: 'label'
[2025/02/14 20:13:10] ppocr ERROR: Error occurred while parsing {'image': './PP-OCRv4-dataset/train/images/2_4/lhr_12_19_00024263.jpg', 'annotations
': [{'polygon': [0.7020158767700195, 0.6111408869425455, 0.8898781538009644, 0.6111408869425455, 0.8898781538009644, 0.6923139890034993, 0.7020158767
700195, 0.6923139890034993], 'label': 'риза', 'type': 'printed'}, {'polygon': [0.07221144437789917, 0.7680433591206869, 0.24062815308570862, 0.7680433591206869, 0.24062815308570862, 0.8497076034545898, 0.07221144437789917, 0.8497076034545898], 'label': 'баул', 'type': 'printed'}]}: 'label'
[2025/02/14 20:13:10] ppocr ERROR: Error occurred while parsing {'image': './PP-OCRv4-dataset/train/images/1_13/lhr_11_795_00960218.jpg', 'annotatio
ns': [{'polygon': [0.13096123933792114, 0.6723529696464539, 0.2555067737897237, 0.6723529696464539, 0.2555067737897237, 0.7424202561378479, 0.1309612
3933792114, 0.7424202561378479], 'label': '75597', 'type': 'printed'}, {'polygon': [0.7401151657104492, 0.13535887002944946, 0.8865143458048502, 0.13
535887002944946, 0.8865143458048502, 0.29110050201416016, 0.7401151657104492, 0.29110050201416016], 'label': '35667', 'type': 'printed'}, {'polygon':
[0.5721571445465088, 0.1284312903881073, 0.685986598332723, 0.1284312903881073, 0.685986598332723, 0.226767897605896, 0.5721571445465088, 0.226767897605896], 'label': '69914', 'type': 'printed'}]}: 'label'
[2025/02/14 20:13:10]
作为初学者,对PP-v4的数据处理逻辑尚不熟悉,若问题表述不够清晰,还请海涵!
这个项目已经卡主很久了,真心期待您的专业解答,感谢!
Beta Was this translation helpful? Give feedback.
All reactions