eval没有评估到100%就停止了 #15646
yangoono
started this conversation in
Show and tell
eval没有评估到100%就停止了
#15646
Replies: 1 comment 1 reply
-
您好,我这边测试了一下是可以正常评估的,可以试下官方数据集 https://paddle-model-ecology.bj.bcebos.com/paddlex/data/ocr_rec_dataset_examples.tar 呢? |
Beta Was this translation helpful? Give feedback.
1 reply
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
出现的问题

我的数据格式是 图片\t标签的类型
我的配置文件
`Global:
model_name: PP-OCRv5_server_rec # To use static model for inference.
debug: false
use_gpu: true
epoch_num: 200
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/PP-OCRv5_server_rec
save_epoch_step: 10
eval_batch_step: [0, 2000]
cal_metric_during_train: true
calc_epoch_interval: 1
pretrained_model: F:/OCR/PaddleOCR-main/PP-OCRv5_server_rec_pretrained
checkpoints:
save_inference_dir:
use_visualdl: true
infer_img: doc/imgs_words/ch/word_1.jpg
character_dict_path: ./ppocr/utils/dict/ppocrv5_dict.txt
max_text_length: &max_text_length 25
infer_mode: false
use_space_char: true
distributed: true
save_res_path: ./output/rec/predicts_ppocrv5.txt
d2s_train_image_shape: [3, 48, 320]
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.0005
warmup_epoch: 1
regularizer:
name: L2
factor: 3.0e-05
Architecture:
model_type: rec
algorithm: SVTR_HGNet
Transform:
Backbone:
name: PPHGNetV2_B4
text_rec: True
Head:
name: MultiHead
head_list:
- CTCHead:
Neck:
name: svtr
dims: 120
depth: 2
hidden_dims: 120
kernel_size: [1, 3]
use_guide: True
Head:
fc_decay: 0.00001
- NRTRHead:
nrtr_dim: 384
max_text_length: *max_text_length
Loss:
name: MultiLoss
loss_config_list:
- CTCLoss:
- NRTRLoss:
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
name: MultiScaleDataSet
ds_width: false
data_dir: ./train_data/
ext_op_transform_idx: 1
label_file_list:
- ./train_data/rec_image/extracted_transcriptions_train.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- RecAug:
- MultiLabelEncode:
gtc_encode: NRTRLabelEncode
- KeepKeys:
keep_keys:
- image
- label_ctc
- label_gtc
- length
- valid_ratio
sampler:
name: MultiScaleSampler
scales: [[320, 32], [320, 48], [320, 64]]
first_bs: &bs 128
fix_bs: false
divided_factor: [8, 16] # w, h
is_training: True
loader:
shuffle: true
batch_size_per_card: *bs
drop_last: true
num_workers: 16
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data
label_file_list:
- ./train_data/rec_image/extracted_transcriptions_test.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- MultiLabelEncode:
gtc_encode: NRTRLabelEncode
- RecResizeImg:
image_shape: [3, 48, 320]
- KeepKeys:
keep_keys:
- image
- label_ctc
- label_gtc
- length
- valid_ratio
loader:
shuffle: false
drop_last: false
batch_size_per_card: 128
num_workers: 4
`
Beta Was this translation helpful? Give feedback.
All reactions