H200 PP-OCRv5 推理异常 #16432
-
🔎 Search before asking
🐛 Bug (问题描述)各位开发者,我在使用H200进行推理时遇到一个问题,模型无法输出结果或者输出乱码,简单debug后发现detection部分的seg map全没有激活,rec单独推理也是错误的,所以恳请PPOCR团队成员测试下H200的可用性 🏃♂️ Environment (运行环境)基本的环境如下: 以下是torch envs python -m torch.utils.collect_env
/root/miniconda3/lib/python3.10/runpy.py:126: RuntimeWarning: 'torch.utils.collect_env' found in sys.modules after import of package 'torch.utils', but prior to execution of 'torch.utils.collect_env'; this may result in unpredictable behaviour
warn(RuntimeWarning(msg))
Collecting environment information...
PyTorch version: 2.7.0+cu118
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.5 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.31.0
Libc version: glibc-2.31
Python version: 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-119-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA H200
Nvidia driver version: 550.127.08
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.7.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.7.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.7.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.7.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.7.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.7.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.7.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 57 bits virtual
CPU(s): 192
On-line CPU(s) list: 0-191
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 207
Model name: INTEL(R) XEON(R) PLATINUM 8558
Stepping: 2
CPU MHz: 3093.066
CPU max MHz: 4000.0000
CPU min MHz: 800.0000
BogoMIPS: 4200.00
Virtualization: VT-x
L1d cache: 4.5 MiB
L1i cache: 3 MiB
L2 cache: 192 MiB
L3 cache: 520 MiB
NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,131,133,135,137,139,141,143,145,147,149,151,153,155,157,159,161,163,165,167,169,171,173,175,177,179,181,183,185,187,189,191
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Versions of relevant libraries:
[pip3] mypy_extensions==1.1.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu11==11.11.3.6
[pip3] nvidia-cuda-cupti-cu11==11.8.87
[pip3] nvidia-cuda-nvrtc-cu11==11.8.89
[pip3] nvidia-cuda-runtime-cu11==11.8.89
[pip3] nvidia-cudnn-cu11==9.1.0.70
[pip3] nvidia-cufft-cu11==10.9.0.58
[pip3] nvidia-curand-cu11==10.3.0.86
[pip3] nvidia-cusolver-cu11==11.4.1.48
[pip3] nvidia-cusparse-cu11==11.7.5.86
[pip3] nvidia-nccl-cu11==2.21.5
[pip3] nvidia-nvtx-cu11==11.8.86
[pip3] onnx==1.18.0
[pip3] onnxruntime==1.22.0
[pip3] onnxruntime-gpu==1.18.1
[pip3] pytorch-lightning==2.5.1.post0
[pip3] torch==2.7.0+cu118
[pip3] torchmetrics==1.7.1
[pip3] torchvision==0.22.0+cu118
[pip3] triton==3.3.0
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu11 11.11.3.6 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu11 11.8.87 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu11 11.8.89 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu11 11.8.89 pypi_0 pypi
[conda] nvidia-cudnn-cu11 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu11 10.9.0.58 pypi_0 pypi
[conda] nvidia-curand-cu11 10.3.0.86 pypi_0 pypi
[conda] nvidia-cusolver-cu11 11.4.1.48 pypi_0 pypi
[conda] nvidia-cusparse-cu11 11.7.5.86 pypi_0 pypi
[conda] nvidia-nccl-cu11 2.21.5 pypi_0 pypi
[conda] nvidia-nvtx-cu11 11.8.86 pypi_0 pypi
[conda] pytorch-lightning 2.5.1.post0 pypi_0 pypi
[conda] torch 2.7.0+cu118 pypi_0 pypi
[conda] torchmetrics 1.7.1 pypi_0 pypi
[conda] torchvision 0.22.0+cu118 pypi_0 pypi
[conda] triton 3.3.0 pypi_0 pypi 🌰 Minimal Reproducible Example (最小可复现问题的Demo)from paddleocr import PaddleOCR
ocr = PaddleOCR(lang="ch") # 通过 lang 参数来使用英文模型
result = ocr.predict(img_file)
print(result[0]['rec_texts']) |
Beta Was this translation helpful? Give feedback.
Replies: 3 comments
-
在H100上测试过正确性,在H200的机器我们的确没有测试过,后续我们找到机器后会高优测试,也欢迎其他有H200机器的社区同学一起定位下~ |
Beta Was this translation helpful? Give feedback.
-
使用H200,paddleocr版本比較舊,但H200執行v4正常 原本使用paddlepaddle-gpu==2.6.2會有問題,單獨把這個套件升版就可以了~供大家參考 這邊也補上一些環境的版本 PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.22.1
Libc version: glibc-2.35
Python version: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-1080-kvm-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
Nvidia driver version: 550.163.01
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.25.1
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] onnxruntime==1.21.0
[pip3] torch==2.6.0
[pip3] torchvision==0.21.0
[pip3] triton==3.2.0 |
Beta Was this translation helpful? Give feedback.
-
我这边paddlepaddle-gpu 3.0.0 升级12.6之后就可以了,11.8不可以 |
Beta Was this translation helpful? Give feedback.
使用H200,paddleocr版本比較舊,但H200執行v4正常
Python 3.10.12
paddleocr 2.10.0
paddlepaddle-gpu 3.0.0
paddlex 3.0.1
原本使用paddlepaddle-gpu==2.6.2會有問題,單獨把這個套件升版就可以了~供大家參考
這邊也補上一些環境的版本
PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-1080-kvm-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU mo…