Skip to content

Commit 0baab9d

Browse files
committed
readme
1 parent fbc3e58 commit 0baab9d

File tree

2 files changed

+4
-3
lines changed

2 files changed

+4
-3
lines changed

models/multitask/readme.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,7 @@
2323
| share_bottom | A Knowledge-Based Source of Inductive Bias | [ICML 1993][Multitask Learning: A Knowledge-Based Source of Inductive Bias](http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F45CA386897E5A6EBCF74D5DBAC85A13?doi=10.1.1.57.3196&rep=rep1&type=pdf) |
2424
| ple | Progressive Layered Extraction | [ACM 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
2525
| maml | Model-Agnostic Meta-Learning | [LCML 2017][Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks](https://arxiv.org/pdf/1703.03400.pdf) |
26+
| aitm | aitm | [KDD][Modeling the Sequential Dependence among Audience Multi-step Conversions withMulti-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
2627

2728
下面是每个模型的简介(注:图片引用自链接中的论文)
2829

@@ -68,7 +69,7 @@ python -u ../../../tools/static_infer.py -m config.yaml
6869
| census | share_bottom | -- | 0.99 |
6970
| census | ple | -- | 0.99 |
7071
| omniglot | maml | -- | 0.98 |
71-
72+
| Ali-CCP | aitm | -- | 0.6186 / 0.6525 |
7273
### 效果复现
7374
您需要进入PaddleRec/datasets目录下的对应数据集中运行脚本获取全量数据集,然后在模型目录下使用全量数据的参数运行。
7475
每个模型下的readme中都有详细的效果复现的教程,您可以进入模型的目录中详细查看。

models/rank/readme.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@
3535
| dmr | dmr |[Deep Match to Rank Model for Personalized Click-Through Rate Prediction](https://github.com/lvze92/DMR/blob/master/%5BDMR%5D%20Deep%20Match%20to%20Rank%20Model%20for%20Personalized%20Click-Through%20Rate%20Prediction-AAAI20.pdf)|
3636
| ffm | ffm | [Field-aware factorization machines for CTR prediction](https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf) |
3737
| xdeepfm | xdeepfm | [xdeepfm: Combining explicit and implicit feature interactions for recommender systems](https://arxiv.org/pdf/1803.05170v3.pdf) |
38-
| aitm | aitm | [Modeling the Sequential Dependence among Audience Multi-step Conversions withMulti-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
38+
3939

4040

4141
下面是每个模型的简介(注:图片引用自链接中的论文)
@@ -90,7 +90,7 @@ python -u ../../../tools/static_infer.py -m config.yaml
9090
| Ali_Display_Ad_Click | dmr | -- | 0.6434 | -- |
9191
| criteo | ffm | -- | 0.79 | -- |
9292
| criteo | xDeepFM | -- | 0.79 | -- |
93-
| Ali-CCP | aitm | -- | 0.6186 / 0.6525 | -- |
93+
9494

9595
### 效果复现
9696
您需要进入PaddleRec/datasets目录下的对应数据集中运行脚本获取全量数据集,然后在模型目录下使用全量数据的参数运行。

0 commit comments

Comments
 (0)