Skip to content

Commit 5fb58ca

Browse files
committed
add model
1 parent 2973a96 commit 5fb58ca

File tree

2 files changed

+4
-0
lines changed

2 files changed

+4
-0
lines changed

README.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -131,6 +131,8 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # 静态图训
131131
| 排序 | [xDeepFM](models/rank/xdeepfm/) |||| x | 2.1.0 | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
132132
| 排序 | [DIN](models/rank/din/) |||| x | 2.1.0 | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
133133
| 排序 | [DIEN](models/rank/dien/) |||| x | 2.1.0 | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
134+
| 排序 | [dlrm](models/rank/dlrm/) |||| x | 2.1.0 | [CoRR 2019][Deep Learning Recommendation Model for Personalization and Recommendation Systems](https://arxiv.org/abs/1906.00091) |
135+
| 排序 | [DeepFEFM](models/rank/deepfefm/) |||| x | 2.1.0 | [arXiv 2020][Field-Embedded Factorization Machines for Click-through rate prediction](https://arxiv.org/abs/2009.09931) |
134136
| 排序 | [BST](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/BST/) |||| x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [DLP_KDD 2019][Behavior Sequence Transformer for E-commerce Recommendation in Alibaba](https://arxiv.org/pdf/1905.06874v1.pdf) |
135137
| 排序 | [AutoInt](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/AutoInt/) |||| x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/pdf/1810.11921.pdf) |
136138
| 排序 | [Wide&Deep](models/rank/wide_deep/) |||| x | 2.1.0 | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |

README_EN.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -126,6 +126,8 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # Training wit
126126
| Rank | [xDeepFM](models/rank/xdeepfm/) |||| x | 2.1.0 | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
127127
| Rank | [DIN](models/rank/din/) |||| x | 2.1.0 | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
128128
| Rank | [DIEN](models/rank/dien/) |||| x | 2.1.0 | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
129+
| Rank | [dlrm](models/rank/dlrm/) |||| x | 2.1.0 | [CoRR 2019][Deep Learning Recommendation Model for Personalization and Recommendation Systems](https://arxiv.org/abs/1906.00091) |
130+
| Rank | [DeepFEFM](models/rank/deepfefm/) |||| x | 2.1.0 | [arXiv 2020][Field-Embedded Factorization Machines for Click-through rate prediction](https://arxiv.org/abs/2009.09931) |
129131
| Rank | [BST](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/BST/) |||| x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [DLP-KDD 2019][Behavior Sequence Transformer for E-commerce Recommendation in Alibaba](https://arxiv.org/pdf/1905.06874v1.pdf) |
130132
| Rank | [AutoInt](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/AutoInt/) |||| x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/pdf/1810.11921.pdf) |
131133
| Rank | [Wide&Deep](models/rank/wide_deep/) |||| x | 2.1.0 | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |

0 commit comments

Comments
 (0)