Skip to content

Commit 7f04fb1

Browse files
committed
fix
2 parents 5e4fbfb + 519a289 commit 7f04fb1

File tree

1 file changed

+16
-16
lines changed

1 file changed

+16
-16
lines changed

README.md

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -45,21 +45,21 @@
4545
| 召回 | [Youtube_dnn](models/recall/youtube_dnn/model.py) ||||| [RecSys 2016][Deep Neural Networks for YouTube Recommendations](https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/45530.pdf) |
4646
| 召回 | [NCF](models/recall/ncf/model.py) ||||| [WWW 2017][Neural Collaborative Filtering](https://arxiv.org/pdf/1708.05031.pdf) |
4747
| 召回 | [GNN](models/recall/gnn/model.py) ||||| [AAAI 2019][Session-based Recommendation with Graph Neural Networks](https://arxiv.org/abs/1811.00855) |
48-
| 排序 | [Logistic Regression](models/rank/logistic_regression/model.py) || x || x | / |
49-
| 排序 | [Dnn](models/rank/dnn/model.py) ||||| / |
50-
| 排序 | [FM](models/rank/fm/model.py) || x || x | [IEEE Data Mining 2010][Factorization machines](https://analyticsconsultores.com.mx/wp-content/uploads/2019/03/Factorization-Machines-Steffen-Rendle-Osaka-University-2010.pdf) |
51-
| 排序 | [FFM](models/rank/ffm/model.py) || x || x | [RECSYS 2016][Field-aware Factorization Machines for CTR Prediction](https://dl.acm.org/doi/pdf/10.1145/2959100.2959134) |
52-
| 排序 | [FNN](models/rank/fnn/model.py) || x || x | [ECIR 2016][Deep Learning over Multi-field Categorical Data](https://arxiv.org/pdf/1601.02376.pdf) |
53-
| 排序 | [Deep Crossing](models/rank/deep_crossing/model.py) || x || x | [ACM 2016][Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features](https://www.kdd.org/kdd2016/papers/files/adf0975-shanA.pdf) |
54-
| 排序 | [Pnn](models/rank/pnn/model.py) || x || x | [ICDM 2016][Product-based Neural Networks for User Response Prediction](https://arxiv.org/pdf/1611.00144.pdf) |
55-
| 排序 | [DCN](models/rank/dcn/model.py) || x || x | [KDD 2017][Deep & Cross Network for Ad Click Predictions](https://dl.acm.org/doi/pdf/10.1145/3124749.3124754) |
56-
| 排序 | [NFM](models/rank/nfm/model.py) || x || x | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://dl.acm.org/doi/pdf/10.1145/3077136.3080777) |
57-
| 排序 | [AFM](models/rank/afm/model.py) || x || x | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf) |
58-
| 排序 | [DeepFM](models/rank/deepfm/model.py) || x || x | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/pdf/1703.04247.pdf) |
59-
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) || x || x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
60-
| 排序 | [DIN](models/rank/din/model.py) || x || x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
61-
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) || x || x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
62-
| 排序 | [FGCNN](models/rank/fgcnn/model.py) |||||[WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf)|
48+
| 排序 | [Logistic Regression](models/rank/logistic_regression/model.py) || x || x | / |
49+
| 排序 | [Dnn](models/rank/dnn/model.py) ||||| / |
50+
| 排序 | [FM](models/rank/fm/model.py) || x || x | [IEEE Data Mining 2010][Factorization machines](https://analyticsconsultores.com.mx/wp-content/uploads/2019/03/Factorization-Machines-Steffen-Rendle-Osaka-University-2010.pdf) |
51+
| 排序 | [FFM](models/rank/ffm/model.py) || x || x | [RECSYS 2016][Field-aware Factorization Machines for CTR Prediction](https://dl.acm.org/doi/pdf/10.1145/2959100.2959134) |
52+
| 排序 | [FNN](models/rank/fnn/model.py) || x || x | [ECIR 2016][Deep Learning over Multi-field Categorical Data](https://arxiv.org/pdf/1601.02376.pdf) |
53+
| 排序 | [Deep Crossing](models/rank/deep_crossing/model.py) || x || x | [ACM 2016][Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features](https://www.kdd.org/kdd2016/papers/files/adf0975-shanA.pdf) |
54+
| 排序 | [Pnn](models/rank/pnn/model.py) || x || x | [ICDM 2016][Product-based Neural Networks for User Response Prediction](https://arxiv.org/pdf/1611.00144.pdf) |
55+
| 排序 | [DCN](models/rank/dcn/model.py) || x || x | [KDD 2017][Deep & Cross Network for Ad Click Predictions](https://dl.acm.org/doi/pdf/10.1145/3124749.3124754) |
56+
| 排序 | [NFM](models/rank/nfm/model.py) || x || x | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://dl.acm.org/doi/pdf/10.1145/3077136.3080777) |
57+
| 排序 | [AFM](models/rank/afm/model.py) || x || x | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf) |
58+
| 排序 | [DeepFM](models/rank/deepfm/model.py) || x || x | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/pdf/1703.04247.pdf) |
59+
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) || x || x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
60+
| 排序 | [DIN](models/rank/din/model.py) || x || x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
61+
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) || x || x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
62+
| 排序 | [FGCNN](models/rank/fgcnn/model.py) ||||| [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
6363
| 多任务 | [ESMM](models/multitask/esmm/model.py) ||||| [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
6464
| 多任务 | [MMOE](models/multitask/mmoe/model.py) ||||| [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
6565
| 多任务 | [ShareBottom](models/multitask/share-bottom/model.py) ||||| [1998][Multitask learning](http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-203.pdf) |
@@ -120,7 +120,7 @@ python -m paddlerec.run -m paddlerec.models.rank.dnn
120120
* [分布式深度学习介绍](doc/ps_background.md)
121121

122122
### 快速开始
123-
* [十分钟上手PaddleRec](https://aistudio.baidu.com/aistudio/projectdetail/523965)
123+
* [十分钟上手PaddleRec](https://aistudio.baidu.com/aistudio/projectdetail/559336)
124124

125125
### 入门教程
126126
* [数据准备](doc/slot_reader.md)

0 commit comments

Comments
 (0)