|
45 | 45 | | 召回 | [Youtube_dnn](models/recall/youtube_dnn/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys 2016][Deep Neural Networks for YouTube Recommendations](https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/45530.pdf) | |
46 | 46 | | 召回 | [NCF](models/recall/ncf/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2017][Neural Collaborative Filtering](https://arxiv.org/pdf/1708.05031.pdf) | |
47 | 47 | | 召回 | [GNN](models/recall/gnn/model.py) | ✓ | ✓ | ✓ | ✓ | [AAAI 2019][Session-based Recommendation with Graph Neural Networks](https://arxiv.org/abs/1811.00855) | |
48 | | - | 排序 | [Logistic Regression](models/rank/logistic_regression/model.py) | ✓ | x | ✓ | x | / | |
49 | | - | 排序 | [Dnn](models/rank/dnn/model.py) | ✓ | ✓ | ✓ | ✓ | / | |
50 | | - | 排序 | [FM](models/rank/fm/model.py) | ✓ | x | ✓ | x | [IEEE Data Mining 2010][Factorization machines](https://analyticsconsultores.com.mx/wp-content/uploads/2019/03/Factorization-Machines-Steffen-Rendle-Osaka-University-2010.pdf) | |
51 | | - | 排序 | [FFM](models/rank/ffm/model.py) | ✓ | x | ✓ | x | [RECSYS 2016][Field-aware Factorization Machines for CTR Prediction](https://dl.acm.org/doi/pdf/10.1145/2959100.2959134) | |
52 | | - | 排序 | [FNN](models/rank/fnn/model.py) | ✓ | x | ✓ | x | [ECIR 2016][Deep Learning over Multi-field Categorical Data](https://arxiv.org/pdf/1601.02376.pdf) | |
53 | | - | 排序 | [Deep Crossing](models/rank/deep_crossing/model.py) | ✓ | x | ✓ | x | [ACM 2016][Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features](https://www.kdd.org/kdd2016/papers/files/adf0975-shanA.pdf) | |
54 | | - | 排序 | [Pnn](models/rank/pnn/model.py) | ✓ | x | ✓ | x | [ICDM 2016][Product-based Neural Networks for User Response Prediction](https://arxiv.org/pdf/1611.00144.pdf) | |
55 | | - | 排序 | [DCN](models/rank/dcn/model.py) | ✓ | x | ✓ | x | [KDD 2017][Deep & Cross Network for Ad Click Predictions](https://dl.acm.org/doi/pdf/10.1145/3124749.3124754) | |
56 | | - | 排序 | [NFM](models/rank/nfm/model.py) | ✓ | x | ✓ | x | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://dl.acm.org/doi/pdf/10.1145/3077136.3080777) | |
57 | | - | 排序 | [AFM](models/rank/afm/model.py) | ✓ | x | ✓ | x | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf) | |
58 | | - | 排序 | [DeepFM](models/rank/deepfm/model.py) | ✓ | x | ✓ | x | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/pdf/1703.04247.pdf) | |
59 | | - | 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) | |
60 | | - | 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) | |
61 | | - | 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) | |
62 | | - | 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ |[WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf)| |
| 48 | + | 排序 | [Logistic Regression](models/rank/logistic_regression/model.py) | ✓ | x | ✓ | x | / | |
| 49 | + | 排序 | [Dnn](models/rank/dnn/model.py) | ✓ | ✓ | ✓ | ✓ | / | |
| 50 | + | 排序 | [FM](models/rank/fm/model.py) | ✓ | x | ✓ | x | [IEEE Data Mining 2010][Factorization machines](https://analyticsconsultores.com.mx/wp-content/uploads/2019/03/Factorization-Machines-Steffen-Rendle-Osaka-University-2010.pdf) | |
| 51 | + | 排序 | [FFM](models/rank/ffm/model.py) | ✓ | x | ✓ | x | [RECSYS 2016][Field-aware Factorization Machines for CTR Prediction](https://dl.acm.org/doi/pdf/10.1145/2959100.2959134) | |
| 52 | + | 排序 | [FNN](models/rank/fnn/model.py) | ✓ | x | ✓ | x | [ECIR 2016][Deep Learning over Multi-field Categorical Data](https://arxiv.org/pdf/1601.02376.pdf) | |
| 53 | + | 排序 | [Deep Crossing](models/rank/deep_crossing/model.py) | ✓ | x | ✓ | x | [ACM 2016][Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features](https://www.kdd.org/kdd2016/papers/files/adf0975-shanA.pdf) | |
| 54 | + | 排序 | [Pnn](models/rank/pnn/model.py) | ✓ | x | ✓ | x | [ICDM 2016][Product-based Neural Networks for User Response Prediction](https://arxiv.org/pdf/1611.00144.pdf) | |
| 55 | + | 排序 | [DCN](models/rank/dcn/model.py) | ✓ | x | ✓ | x | [KDD 2017][Deep & Cross Network for Ad Click Predictions](https://dl.acm.org/doi/pdf/10.1145/3124749.3124754) | |
| 56 | + | 排序 | [NFM](models/rank/nfm/model.py) | ✓ | x | ✓ | x | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://dl.acm.org/doi/pdf/10.1145/3077136.3080777) | |
| 57 | + | 排序 | [AFM](models/rank/afm/model.py) | ✓ | x | ✓ | x | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf) | |
| 58 | + | 排序 | [DeepFM](models/rank/deepfm/model.py) | ✓ | x | ✓ | x | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/pdf/1703.04247.pdf) | |
| 59 | + | 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) | |
| 60 | + | 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) | |
| 61 | + | 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) | |
| 62 | + | 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) | |
63 | 63 | | 多任务 | [ESMM](models/multitask/esmm/model.py) | ✓ | ✓ | ✓ | ✓ | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) | |
64 | 64 | | 多任务 | [MMOE](models/multitask/mmoe/model.py) | ✓ | ✓ | ✓ | ✓ | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) | |
65 | 65 | | 多任务 | [ShareBottom](models/multitask/share-bottom/model.py) | ✓ | ✓ | ✓ | ✓ | [1998][Multitask learning](http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-203.pdf) | |
@@ -120,7 +120,7 @@ python -m paddlerec.run -m paddlerec.models.rank.dnn |
120 | 120 | * [分布式深度学习介绍](doc/ps_background.md) |
121 | 121 |
|
122 | 122 | ### 快速开始 |
123 | | -* [十分钟上手PaddleRec](https://aistudio.baidu.com/aistudio/projectdetail/523965) |
| 123 | +* [十分钟上手PaddleRec](https://aistudio.baidu.com/aistudio/projectdetail/559336) |
124 | 124 |
|
125 | 125 | ### 入门教程 |
126 | 126 | * [数据准备](doc/slot_reader.md) |
|
0 commit comments