File tree Expand file tree Collapse file tree 3 files changed +4
-3
lines changed Expand file tree Collapse file tree 3 files changed +4
-3
lines changed Original file line number Diff line number Diff line change @@ -158,9 +158,9 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # 静态图训
158158 | 排序 | [ Wide&Deep] ( models/rank/wide_deep/ ) ([ 文档] ( https://paddlerec.readthedocs.io/en/latest/models/rank/wide_deep.html ) ) | [ Python CPU/GPU] ( https://aistudio.baidu.com/aistudio/projectdetail/3238421 ) | ✓ | x | >=2.1.0 | [ DLRS 2016] [ Wide & Deep Learning for Recommender Systems ] (https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
159159 | 排序 | [ FGCNN] ( https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/fgcnn/ ) | - | ✓ | ✓ | [ 1.8.5] ( https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5 ) | [ WWW 2019] [ Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction ] (https://arxiv.org/pdf/1904.04447.pdf) |
160160 | 排序 | [ Fibinet] ( https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/fibinet/ ) | - | ✓ | ✓ | [ 1.8.5] ( https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5 ) | [ RecSys19] [ FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction ] ( https://arxiv.org/pdf/1905.09433.pdf) |
161- | 排序 | [ Flen ] ( https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/ models/rank/flen/) | - | ✓ | ✓ | [ 1.8.5 ] ( https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5 ) | [ 2019] [ FLEN: Leveraging Field for Scalable CTR Prediction ] ( https://arxiv.org/pdf/1911.04690.pdf) |
161+ | 排序 | [ FLEN ] ( models/rank/flen/ ) | - | ✓ | ✓ | >=2.1.0 | [ 2019] [ FLEN: Leveraging Field for Scalable CTR Prediction ] ( https://arxiv.org/pdf/1911.04690.pdf) |
162162 | 排序 | [ DeepRec] ( models/rank/deeprec/ ) | - | ✓ | ✓ | >=2.1.0 | [ 2017] [ Training Deep AutoEncoders for Collaborative Filtering ] (https://arxiv.org/pdf/1708.01715v3.pdf) |
163- | 排序 | [ AutoFIS] ( models/rank/autofis/ ) | - | ✓ | ✓ | >=2.1.0 | [ KDD 2020] [ AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction ] (https://arxiv.org/pdf/2003.11235v3.pdf) | | - | ✓ | ✓ | [ 1.8.5 ] ( https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5 ) | [ 2019 ] [ FLEN: Leveraging Field for Scalable CTR Prediction ] ( https://arxiv.org/pdf/1911.04690.pdf) |
163+ | 排序 | [ AutoFIS] ( models/rank/autofis/ ) | - | ✓ | ✓ | >=2.1.0 | [ KDD 2020] [ AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction ] (https://arxiv.org/pdf/2003.11235v3.pdf )
164164 | 多任务 | [ PLE] ( models/multitask/ple/ ) ([ 文档] ( https://paddlerec.readthedocs.io/en/latest/models/multitask/ple.html ) ) | [ Python CPU/GPU] ( https://aistudio.baidu.com/aistudio/projectdetail/3238938 ) | ✓ | ✓ | >=2.1.0 | [ RecSys 2020] [ Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations ] (https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
165165 | 多任务 | [ ESMM] ( models/multitask/esmm/ ) ([ 文档] ( https://paddlerec.readthedocs.io/en/latest/models/multitask/esmm.html ) ) | [ Python CPU/GPU] ( https://aistudio.baidu.com/aistudio/projectdetail/3238583 ) | ✓ | ✓ | >=2.1.0 | [ SIGIR 2018] [ Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate ] (https://arxiv.org/abs/1804.07931) |
166166 | 多任务 | [ MMOE] ( models/multitask/mmoe/ ) ([ 文档] ( https://paddlerec.readthedocs.io/en/latest/models/multitask/mmoe.html ) ) | [ Python CPU/GPU] ( https://aistudio.baidu.com/aistudio/projectdetail/3238934 ) | ✓ | ✓ | >=2.1.0 | [ KDD 2018] [ Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts ] (https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
Original file line number Diff line number Diff line change @@ -148,7 +148,7 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # Training wit
148148 | Rank | [ Wide&Deep] ( models/rank/wide_deep/ ) <br >([ doc] ( https://paddlerec.readthedocs.io/en/latest/models/rank/wide_deep.html ) ) | [ Python CPU/GPU] ( https://aistudio.baidu.com/aistudio/projectdetail/3238421 ) | ✓ | x | >=2.1.0 | [ DLRS 2016] [ Wide & Deep Learning for Recommender Systems ] (https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
149149 | Rank | [ FGCNN] ( https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/fgcnn/ ) | - | ✓ | ✓ | [ 1.8.5] ( https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5 ) | [ WWW 2019] [ Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction ] (https://arxiv.org/pdf/1904.04447.pdf) |
150150 | Rank | [ Fibinet] ( https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/fibinet/ ) | - | ✓ | ✓ | [ 1.8.5] ( https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5 ) | [ RecSys19] [ FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction ] ( https://arxiv.org/pdf/1905.09433.pdf) |
151- | Rank | [ Flen ] ( https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/ models/rank/flen/) | - | ✓ | ✓ | [ 1.8.5 ] ( https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5 ) | [ 2019] [ FLEN: Leveraging Field for Scalable CTR Prediction ] ( https://arxiv.org/pdf/1911.04690.pdf) |
151+ | Rank | [ FLEN ] ( models/rank/flen/ ) | - | ✓ | ✓ | >=2.1.0 | [ 2019] [ FLEN: Leveraging Field for Scalable CTR Prediction ] ( https://arxiv.org/pdf/1911.04690.pdf) |
152152 | Rank | [ DeepRec] ( models/rank/deeprec/ ) | - | ✓ | ✓ | >=2.1.0 | [ 2017] [ Training Deep AutoEncoders for Collaborative Filtering ] (https://arxiv.org/pdf/1708.01715v3.pdf) |
153153 | Rank | [ AutoFIS] ( models/rank/autofis/ ) | - | ✓ | ✓ | >=2.1.0 | [ KDD 2020] [ AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction ] (https://arxiv.org/pdf/2003.11235v3.pdf) |
154154 | Multi-Task | [ PLE] ( models/multitask/ple/ ) <br >([ doc] ( https://paddlerec.readthedocs.io/en/latest/models/multitask/ple.html ) ) | [ Python CPU/GPU] ( https://aistudio.baidu.com/aistudio/projectdetail/3238938 ) | ✓ | ✓ | >=2.1.0 | [ RecSys 2020] [ Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations ] (https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
Original file line number Diff line number Diff line change 1717 | [ AutoFIS] ( models/rank/autofis/ ) | [ renmada] ( https://github.com/renmada ) | https://github.com/PaddlePaddle/PaddleRec/pull/660 | 论文复现赛第五期 |
1818 | [ Dselect_K] ( models/multitask/dselect_k/ ) | [ Andy1314Chen] ( https://github.com/Andy1314Chen ) | https://github.com/PaddlePaddle/PaddleRec/pull/671 | 论文复现赛第五期 |
1919 | [ MIND] ( models/recall/mind/ ) | [ duyiqi17 ] ( https://github.com/duyiqi17 ) | https://github.com/PaddlePaddle/PaddleRec/pull/398 | 其他 |
20+ | [ FLEN] ( models/rank/flen/ ) | [ LinJayan] ( https://github.com/LinJayan ) | https://github.com/PaddlePaddle/PaddleRec/pull/685 | 论文复现赛第五期 |
2021 | [ MHCN] ( models/recall/mhcn/ ) | [ Andy1314Chen] ( https://github.com/Andy1314Chen ) | https://github.com/PaddlePaddle/PaddleRec/pull/679 | 论文复现赛第五期 |
2122
2223</div >
You can’t perform that action at this time.
0 commit comments