Skip to content

Commit 9c7490c

Browse files
authored
Merge pull request #777 from yinhaofeng/bug2.3
infer auc
2 parents 32d5e0c + 52840ab commit 9c7490c

File tree

5 files changed

+11
-3
lines changed

5 files changed

+11
-3
lines changed

README_CN.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,7 @@
1212

1313
<h2 align="center">最新动态<img src="./doc/imgs/rec_new_icon.png" width="40"/></h2>
1414

15+
* [2022/5/18] 新增3个前沿算法:[aitm](models/multitask/aitm),[sign](models/rank/sign),[dsin](models/rank/dsin)
1516
* [2022/3/21] 新增[paper](./paper)目录,发布我们对21年的推荐顶会论文的分析,以及工业界的推荐论文列表,供大家参考。
1617
* [2022/3/10] 新增5个前沿算法: [DCN_V2](models/rank/dcn_v2), [MHCN](models/recall/mhcn), [FLEN](models/rank/flen), [Dselect_K](models/multitask/dselect_k), [AutoFIS](models/rank/autofis)
1718
* [2022/1/12] 新增AI Studio一键[在线运行](https://aistudio.baidu.com/aistudio/projectdetail/3240640)功能,可以方便快捷的在AI Studio平台上在线体验我们的模型。
@@ -169,9 +170,9 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # 静态图训
169170
| 排序 | [DeepRec](models/rank/deeprec/) | - ||| >=2.1.0 | [2017][Training Deep AutoEncoders for Collaborative Filtering](https://arxiv.org/pdf/1708.01715v3.pdf) |
170171
| 排序 | [AutoFIS](models/rank/autofis/) | - ||| >=2.1.0 | [KDD 2020][AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction](https://arxiv.org/pdf/2003.11235v3.pdf) |
171172
| 排序 | [DCN_V2](models/rank/dcn_v2/) | - ||| >=2.1.0 | [WWW 2021][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/pdf/2008.13535v2.pdf)|
172-
| 排序 | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions withMulti-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
173173
| 排序 | [DSIN](models/rank/dsin/) | - ||| >=2.1.0 | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.06482v1.pdf) |
174174
| 排序 | [SIGN](models/rank/sign/)([文档](https://paddl7erec.readthedocs.io/en/latest/models/rank/sign.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3869111) ||| >=2.1.0 | [AAAI 2021][Detecting Beneficial Feature Interactions for Recommender Systems](https://arxiv.org/pdf/2008.00404v6.pdf) |
175+
| 多任务 | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
175176
| 多任务 | [PLE](models/multitask/ple/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/ple.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238938) ||| >=2.1.0 | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
176177
| 多任务 | [ESMM](models/multitask/esmm/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/esmm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238583) ||| >=2.1.0 | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
177178
| 多任务 | [MMOE](models/multitask/mmoe/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/mmoe.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238934) ||| >=2.1.0 | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |

README_EN.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@
88

99
<h2 align="center">News<img src="./doc/imgs/rec_new_icon.png" width="40"/></h2>
1010

11+
* [2022/5/18] Add 3 algorithms::[aitm](models/multitask/aitm),[sign](models/rank/sign),[dsin](models/rank/dsin)
1112
* [2022/3/21] Add a new [paper](./paper) directory , show our analysis of the top meeting papers of the recommendation system in 2021 years and the list of recommendation system papers in the industry for your reference.
1213
* [2022/3/10] Add 5 algorithms: [DCN_V2](models/rank/dcn_v2), [MHCN](models/recall/mhcn), [FLEN](models/rank/flen), [Dselect_K](models/multitask/dselect_k)[AutoFIS](models/rank/autofis)
1314
* [2022/1/12] Add AI Studio [Online running](https://aistudio.baidu.com/aistudio/projectdetail/3240640) function, you can easily and quickly online experience our model on AI studio platform.
@@ -160,9 +161,9 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # Training wit
160161
| Rank | [DeepRec](models/rank/deeprec/) | - ||| >=2.1.0 | [2017][Training Deep AutoEncoders for Collaborative Filtering](https://arxiv.org/pdf/1708.01715v3.pdf) |
161162
| Rank | [AutoFIS](models/rank/autofis/) | - ||| >=2.1.0 | [KDD 2020][AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction](https://arxiv.org/pdf/2003.11235v3.pdf) |
162163
| Rank | [DCN_V2](models/rank/dcn_v2/) | - ||| >=2.1.0 | [WWW 2021][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/pdf/2008.13535v2.pdf)|
163-
| Rank | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions withMulti-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
164164
| Rank | [DSIN](models/rank/dsin/) | - ||| >=2.1.0 | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.06482v1.pdf) |
165165
| Rank | [SIGN](models/rank/sign/)([doc](https://paddlerec.readthedocs.io/en/latest/models/rank/sign.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3869111) ||| >=2.1.0 | [AAAI 2021][Detecting Beneficial Feature Interactions for Recommender Systems](https://arxiv.org/pdf/2008.00404v6.pdf) |
166+
| Multi-Task | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
166167
| Multi-Task | [PLE](models/multitask/ple/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/ple.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238938) ||| >=2.1.0 | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
167168
| Multi-Task | [ESMM](models/multitask/esmm/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/esmm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238583) ||| >=2.1.0 | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
168169
| Multi-Task | [MMOE](models/multitask/mmoe/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/mmoe.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238934) ||| >=2.1.0 | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |

models/rank/sign/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -127,7 +127,7 @@ pip install pgl
127127
cd - # 切回模型目录
128128
# 动态图训练
129129
python -u ../../../tools/trainer.py -m config_bigdata.yaml # 全量数据运行
130-
python -u .././../tools/infer.py -m config_bigdata.yaml # 全量数据预测
130+
python -u ../../../tools/infer.py -m config_bigdata.yaml # 全量数据预测
131131
```
132132

133133
## 进阶使用

tools/infer.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -65,6 +65,7 @@ def main(args):
6565

6666
# tools.vars
6767
use_gpu = config.get("runner.use_gpu", True)
68+
use_auc = config.get("runner.use_auc", False)
6869
use_xpu = config.get("runner.use_xpu", False)
6970
use_npu = config.get("runner.use_npu", False)
7071
use_visual = config.get("runner.use_visual", False)
@@ -177,6 +178,8 @@ def main(args):
177178
metric_str += (
178179
metric_list_name[metric_id] +
179180
": {:.6f},".format(metric_list[metric_id].accumulate()))
181+
if use_auc:
182+
metric_list[metric_id].reset()
180183

181184
tensor_print_str = ""
182185
if tensor_print_dict is not None:

tools/trainer.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -65,6 +65,7 @@ def main(args):
6565

6666
# tools.vars
6767
use_gpu = config.get("runner.use_gpu", True)
68+
use_auc = config.get("runner.use_auc", False)
6869
use_npu = config.get("runner.use_npu", False)
6970
use_xpu = config.get("runner.use_xpu", False)
7071
use_visual = config.get("runner.use_visual", False)
@@ -191,6 +192,8 @@ def main(args):
191192
metric_str += (
192193
metric_list_name[metric_id] +
193194
": {:.6f},".format(metric_list[metric_id].accumulate()))
195+
if use_auc:
196+
metric_list[metric_id].reset()
194197

195198
tensor_print_str = ""
196199
if tensor_print_dict is not None:

0 commit comments

Comments
 (0)