Skip to content

Commit a8db48b

Browse files
authored
Merge branch 'master' into metaheac
2 parents d774f05 + d10fd27 commit a8db48b

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

41 files changed

+2738
-138
lines changed

README_CN.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -172,6 +172,8 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # 静态图训
172172
| 排序 | [DCN_V2](models/rank/dcn_v2/) | - ||| >=2.1.0 | [WWW 2021][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/pdf/2008.13535v2.pdf)|
173173
| 排序 | [DSIN](models/rank/dsin/) | - ||| >=2.1.0 | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.06482v1.pdf) |
174174
| 排序 | [SIGN](models/rank/sign/)([文档](https://paddl7erec.readthedocs.io/en/latest/models/rank/sign.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3869111) ||| >=2.1.0 | [AAAI 2021][Detecting Beneficial Feature Interactions for Recommender Systems](https://arxiv.org/pdf/2008.00404v6.pdf) |
175+
| 排序 | [IPRec](models/rank/iprec/)([文档](https://paddl7erec.readthedocs.io/en/latest/models/rank/iprec.html)) | - ||| >=2.1.0 | [SIGIR 2021][Package Recommendation with Intra- and Inter-Package Attention Networks](http://nlp.csai.tsinghua.edu.cn/~xrb/publications/SIGIR-21_IPRec.pdf) | 多任务 | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
176+
| 排序 | [FGCNN](models/rank/fgcnn/)| - ||| >=2.1.0 | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
175177
| 多任务 | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
176178
| 多任务 | [PLE](models/multitask/ple/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/ple.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238938) ||| >=2.1.0 | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
177179
| 多任务 | [ESMM](models/multitask/esmm/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/esmm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238583) ||| >=2.1.0 | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |

README_EN.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -163,6 +163,8 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # Training wit
163163
| Rank | [DCN_V2](models/rank/dcn_v2/) | - ||| >=2.1.0 | [WWW 2021][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/pdf/2008.13535v2.pdf)|
164164
| Rank | [DSIN](models/rank/dsin/) | - ||| >=2.1.0 | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.06482v1.pdf) |
165165
| Rank | [SIGN](models/rank/sign/)([doc](https://paddlerec.readthedocs.io/en/latest/models/rank/sign.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3869111) ||| >=2.1.0 | [AAAI 2021][Detecting Beneficial Feature Interactions for Recommender Systems](https://arxiv.org/pdf/2008.00404v6.pdf) |
166+
| Rank | [FGCNN](models/rank/fgcnn/)| - ||| >=2.1.0 | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
167+
| Rank | [IPRec](models/rank/iprec/)([doc](https://paddl7erec.readthedocs.io/en/latest/models/rank/iprec.html)) | - ||| >=2.1.0 | [SIGIR 2021][Package Recommendation with Intra- and Inter-Package Attention Networks](http://nlp.csai.tsinghua.edu.cn/~xrb/publications/SIGIR-21_IPRec.pdf) |
166168
| Multi-Task | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
167169
| Multi-Task | [PLE](models/multitask/ple/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/ple.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238938) ||| >=2.1.0 | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
168170
| Multi-Task | [ESMM](models/multitask/esmm/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/esmm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238583) ||| >=2.1.0 | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |

0 commit comments

Comments
 (0)