Skip to content

Commit b50e495

Browse files
committed
static_model
1 parent 20c4986 commit b50e495

File tree

1 file changed

+115
-0
lines changed

1 file changed

+115
-0
lines changed
Lines changed: 115 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,115 @@
1+
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
import math
16+
import paddle
17+
18+
from net import xDeepFMLayer
19+
20+
21+
class StaticModel():
22+
def __init__(self, config):
23+
self.cost = None
24+
self.config = config
25+
self._init_hyper_parameters()
26+
27+
def _init_hyper_parameters(self):
28+
self.is_distributed = False
29+
self.distributed_embedding = False
30+
31+
if self.config.get("hyper_parameters.distributed_embedding", 0) == 1:
32+
self.distributed_embedding = True
33+
34+
self.sparse_feature_number = self.config.get(
35+
"hyper_parameters.sparse_feature_number")
36+
self.sparse_feature_dim = self.config.get(
37+
"hyper_parameters.sparse_feature_dim")
38+
self.sparse_inputs_slot = self.config.get(
39+
"hyper_parameters.sparse_inputs_slots")
40+
self.dense_input_dim = self.config.get(
41+
"hyper_parameters.dense_input_dim")
42+
self.learning_rate = self.config.get(
43+
"hyper_parameters.optimizer.learning_rate")
44+
#self.fc_sizes = self.config.get("hyper_parameters.fc_sizes")
45+
self.layer_sizes_cin = self.config.get(
46+
"hyper_parameters.layer_sizes_cin")
47+
self.layer_sizes_dnn = self.config.get(
48+
"hyper_parameters.layer_sizes_dnn")
49+
50+
def create_feeds(self, is_infer=False):
51+
dense_input = paddle.static.data(
52+
name="dense_input",
53+
shape=[None, self.dense_input_dim],
54+
dtype="float32")
55+
56+
sparse_input_ids = [
57+
paddle.static.data(
58+
name="C" + str(i), shape=[None, 1], dtype="int64")
59+
for i in range(1, self.sparse_inputs_slot)
60+
]
61+
62+
label = paddle.static.data(
63+
name="label", shape=[None, 1], dtype="int64")
64+
65+
self._sparse_data_var = [label] + sparse_input_ids
66+
self._dense_data_var = [dense_input]
67+
68+
feeds_list = [label] + sparse_input_ids + [dense_input]
69+
return feeds_list
70+
71+
def net(self, input, is_infer=False):
72+
self.sparse_inputs = input[1:self.sparse_inputs_slot]
73+
self.dense_input = input[-1]
74+
self.label_input = input[0]
75+
sparse_number = self.sparse_inputs_slot - 1
76+
assert sparse_number == len(self.sparse_inputs)
77+
78+
xdeepfm_model = xDeepFMLayer(
79+
self.sparse_feature_number, self.sparse_feature_dim,
80+
self.dense_input_dim, sparse_number, self.layer_sizes_cin,
81+
self.layer_sizes_dnn)
82+
83+
pred = xdeepfm_model(self.sparse_inputs, self.dense_input)
84+
85+
#pred = F.sigmoid(prediction)
86+
87+
predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)
88+
89+
auc, batch_auc_var, _ = paddle.static.auc(input=predict_2d,
90+
label=self.label_input,
91+
slide_steps=0)
92+
93+
self.inference_target_var = auc
94+
if is_infer:
95+
fetch_dict = {'auc': auc}
96+
return fetch_dict
97+
98+
cost = paddle.nn.functional.log_loss(
99+
input=pred, label=paddle.cast(
100+
self.label_input, dtype="float32"))
101+
avg_cost = paddle.mean(x=cost)
102+
self._cost = avg_cost
103+
fetch_dict = {'cost': avg_cost, 'auc': auc}
104+
return fetch_dict
105+
106+
def create_optimizer(self, strategy=None):
107+
optimizer = paddle.optimizer.Adam(
108+
learning_rate=self.learning_rate, lazy_mode=True)
109+
if strategy != None:
110+
import paddle.distributed.fleet as fleet
111+
optimizer = fleet.distributed_optimizer(optimizer, strategy)
112+
optimizer.minimize(self._cost)
113+
114+
def infer_net(self, input):
115+
return self.net(input, is_infer=True)

0 commit comments

Comments
 (0)