Skip to content

Commit d7db7be

Browse files
authored
Merge branch 'PaddlePaddle:master' into fgcnn
2 parents 7a67e72 + c3f4873 commit d7db7be

File tree

20 files changed

+871
-3
lines changed

20 files changed

+871
-3
lines changed

README_CN.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,7 @@
1212

1313
<h2 align="center">最新动态<img src="./doc/imgs/rec_new_icon.png" width="40"/></h2>
1414

15+
* [2022/5/18] 新增3个前沿算法:[aitm](models/multitask/aitm),[sign](models/rank/sign),[dsin](models/rank/dsin)
1516
* [2022/3/21] 新增[paper](./paper)目录,发布我们对21年的推荐顶会论文的分析,以及工业界的推荐论文列表,供大家参考。
1617
* [2022/3/10] 新增5个前沿算法: [DCN_V2](models/rank/dcn_v2), [MHCN](models/recall/mhcn), [FLEN](models/rank/flen), [Dselect_K](models/multitask/dselect_k), [AutoFIS](models/rank/autofis)
1718
* [2022/1/12] 新增AI Studio一键[在线运行](https://aistudio.baidu.com/aistudio/projectdetail/3240640)功能,可以方便快捷的在AI Studio平台上在线体验我们的模型。
@@ -169,15 +170,16 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # 静态图训
169170
| 排序 | [DeepRec](models/rank/deeprec/) | - ||| >=2.1.0 | [2017][Training Deep AutoEncoders for Collaborative Filtering](https://arxiv.org/pdf/1708.01715v3.pdf) |
170171
| 排序 | [AutoFIS](models/rank/autofis/) | - ||| >=2.1.0 | [KDD 2020][AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction](https://arxiv.org/pdf/2003.11235v3.pdf) |
171172
| 排序 | [DCN_V2](models/rank/dcn_v2/) | - ||| >=2.1.0 | [WWW 2021][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/pdf/2008.13535v2.pdf)|
172-
| 排序 | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions withMulti-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
173173
| 排序 | [DSIN](models/rank/dsin/) | - ||| >=2.1.0 | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.06482v1.pdf) |
174174
| 排序 | [SIGN](models/rank/sign/)([文档](https://paddl7erec.readthedocs.io/en/latest/models/rank/sign.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3869111) ||| >=2.1.0 | [AAAI 2021][Detecting Beneficial Feature Interactions for Recommender Systems](https://arxiv.org/pdf/2008.00404v6.pdf) |
175+
| 多任务 | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
175176
| 多任务 | [PLE](models/multitask/ple/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/ple.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238938) ||| >=2.1.0 | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
176177
| 多任务 | [ESMM](models/multitask/esmm/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/esmm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238583) ||| >=2.1.0 | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
177178
| 多任务 | [MMOE](models/multitask/mmoe/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/mmoe.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238934) ||| >=2.1.0 | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
178179
| 多任务 | [ShareBottom](models/multitask/share_bottom/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/share_bottom.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238943) ||| >=2.1.0 | [1998][Multitask learning](http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-203.pdf) |
179180
| 多任务 | [Maml](models/multitask/maml/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/maml.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238412) | x | x | >=2.1.0 | [PMLR 2017][Model-agnostic meta-learning for fast adaptation of deep networks](https://arxiv.org/pdf/1703.03400.pdf) |
180181
| 多任务 | [DSelect_K](models/multitask/dselect_k/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/dselect_k.html)) | - | x | x | >=2.1.0 | [NeurIPS 2021][DSelect-k: Differentiable Selection in the Mixture of Experts with Applications to Multi-Task Learning](https://arxiv.org/pdf/2106.03760v3.pdf) |
182+
| 多任务 | [ESCM2](models/multitask/escm2/) | - | x | x | >=2.1.0 | [SIGIR 2022][ESCM2: Entire Space Counterfactual Multi-Task Model for Post-Click Conversion Rate Estimation](https://arxiv.org/pdf/2204.05125.pdf) |
181183
| 重排序 | [Listwise](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rerank/listwise/) | - || x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [2019][Sequential Evaluation and Generation Framework for Combinatorial Recommender System](https://arxiv.org/pdf/1902.00245.pdf) |
182184

183185

README_EN.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@
88

99
<h2 align="center">News<img src="./doc/imgs/rec_new_icon.png" width="40"/></h2>
1010

11+
* [2022/5/18] Add 3 algorithms::[aitm](models/multitask/aitm),[sign](models/rank/sign),[dsin](models/rank/dsin)
1112
* [2022/3/21] Add a new [paper](./paper) directory , show our analysis of the top meeting papers of the recommendation system in 2021 years and the list of recommendation system papers in the industry for your reference.
1213
* [2022/3/10] Add 5 algorithms: [DCN_V2](models/rank/dcn_v2), [MHCN](models/recall/mhcn), [FLEN](models/rank/flen), [Dselect_K](models/multitask/dselect_k)[AutoFIS](models/rank/autofis)
1314
* [2022/1/12] Add AI Studio [Online running](https://aistudio.baidu.com/aistudio/projectdetail/3240640) function, you can easily and quickly online experience our model on AI studio platform.
@@ -160,15 +161,16 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # Training wit
160161
| Rank | [DeepRec](models/rank/deeprec/) | - ||| >=2.1.0 | [2017][Training Deep AutoEncoders for Collaborative Filtering](https://arxiv.org/pdf/1708.01715v3.pdf) |
161162
| Rank | [AutoFIS](models/rank/autofis/) | - ||| >=2.1.0 | [KDD 2020][AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction](https://arxiv.org/pdf/2003.11235v3.pdf) |
162163
| Rank | [DCN_V2](models/rank/dcn_v2/) | - ||| >=2.1.0 | [WWW 2021][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/pdf/2008.13535v2.pdf)|
163-
| Rank | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions withMulti-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
164164
| Rank | [DSIN](models/rank/dsin/) | - ||| >=2.1.0 | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.06482v1.pdf) |
165165
| Rank | [SIGN](models/rank/sign/)([doc](https://paddlerec.readthedocs.io/en/latest/models/rank/sign.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3869111) ||| >=2.1.0 | [AAAI 2021][Detecting Beneficial Feature Interactions for Recommender Systems](https://arxiv.org/pdf/2008.00404v6.pdf) |
166+
| Multi-Task | [AITM](models/rank/aitm/) | - ||| >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
166167
| Multi-Task | [PLE](models/multitask/ple/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/ple.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238938) ||| >=2.1.0 | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
167168
| Multi-Task | [ESMM](models/multitask/esmm/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/esmm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238583) ||| >=2.1.0 | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
168169
| Multi-Task | [MMOE](models/multitask/mmoe/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/mmoe.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238934) ||| >=2.1.0 | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
169170
| Multi-Task | [ShareBottom](models/multitask/share_bottom/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/share_bottom.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238943) ||| >=2.1.0 | [1998][Multitask learning](http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-203.pdf) |
170171
| Multi-Task | [Maml](models/multitask/maml/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/maml.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238412) | x | x | >=2.1.0 | [PMLR 2017][Model-agnostic meta-learning for fast adaptation of deep networks](https://arxiv.org/pdf/1703.03400.pdf) |
171172
| Multi-Task | [DSelect_K](models/multitask/dselect_k/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/dselect_k.html)) | - | x | x | >=2.1.0 | [NeurIPS 2021][DSelect-k: Differentiable Selection in the Mixture of Experts with Applications to Multi-Task Learning](https://arxiv.org/pdf/2106.03760v3.pdf) |
173+
| Multi-Task | [ESCM2](models/multitask/escm2/) | - | x | x | >=2.1.0 | [SIGIR 2022][ESCM2: Entire Space Counterfactual Multi-Task Model for Post-Click Conversion Rate Estimation](https://arxiv.org/pdf/2204.05125.pdf) |
172174
| Re-Rank | [Listwise](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rerank/listwise/) | - || x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [2019][Sequential Evaluation and Generation Framework for Combinatorial Recommender System](https://arxiv.org/pdf/1902.00245.pdf) |
173175

174176
<h2 align="center">Community</h2>

doc/imgs/escm2.png

399 KB
Loading

doc/imgs/escm2_dr1.png

61.4 KB
Loading

doc/imgs/escm2_dr2.png

53.1 KB
Loading

doc/imgs/escm2_dr3.png

50 KB
Loading

doc/imgs/escm2_ipw.png

77.5 KB
Loading

models/multitask/escm2/__init__.py

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.

models/multitask/escm2/config.yaml

Lines changed: 56 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,56 @@
1+
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
16+
runner:
17+
train_data_dir: "data/train"
18+
train_reader_path: "escm_reader" # importlib format
19+
use_gpu: False
20+
use_auc: True
21+
auc_num: 2
22+
train_batch_size: 2
23+
epochs: 3
24+
print_interval: 2
25+
#model_init_path: "output_model_escm/2" # init model
26+
model_save_path: "output_model_escm"
27+
test_data_dir: "data/train"
28+
infer_batch_size: 2
29+
infer_reader_path: "escm_reader" # importlib format
30+
infer_load_path: "output_model_escm"
31+
infer_start_epoch: 0
32+
infer_end_epoch: 3
33+
counterfact_mode: "DR"
34+
#use inference save model
35+
use_inference: False
36+
save_inference_feed_varnames: ["field_0", "field_1", "field_2", "field_3", "field_4", "field_5", "field_6", "field_7", "field_8", "field_9", "field_10", "field_11", "field_12", "field_13", "field_14", "field_15", "field_16", "field_17", "field_18", "field_19", "field_20", "field_21", "field_22"]
37+
save_inference_fetch_varnames: ["softmax_0.tmp_0", "concat_1.tmp_0"]
38+
39+
hyper_parameters:
40+
sparse_feature_number: 737946
41+
sparse_feature_dim: 12
42+
num_field: 23
43+
ctr_fc_sizes: [256, 64]
44+
cvr_fc_sizes: [256, 64]
45+
global_w: 1.0
46+
counterfactual_w: 0.01
47+
feature_size: 276
48+
expert_num: 8
49+
gate_num: 3
50+
expert_size: 16
51+
tower_size: 8
52+
53+
optimizer:
54+
class: adam
55+
learning_rate: 0.001
56+
strategy: async
Lines changed: 57 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,57 @@
1+
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
16+
runner:
17+
train_data_dir: "../../../datasets/ali-ccp/train_data"
18+
train_reader_path: "escm_reader" # importlib format
19+
use_gpu: True
20+
use_auc: True
21+
auc_num: 2
22+
train_batch_size: 1024
23+
epochs: 10
24+
print_interval: 10
25+
#model_init_path: "output_model/0" # init model
26+
model_save_path: "output_model_escm_all"
27+
test_data_dir: "../../../datasets/ali-ccp/test_data"
28+
infer_batch_size: 1024
29+
infer_reader_path: "escm_reader" # importlib format
30+
infer_load_path: "output_model_escm_all"
31+
infer_start_epoch: 0
32+
infer_end_epoch: 10
33+
counterfact_mode: "DR"
34+
#use inference save model
35+
use_inference: False
36+
save_inference_feed_varnames: ["field_0", "field_1", "field_2", "field_3", "field_4", "field_5", "field_6", "field_7", "field_8", "field_9", "field_10", "field_11", "field_12", "field_13", "field_14", "field_15", "field_16", "field_17", "field_18", "field_19", "field_20", "field_21", "field_22"]
37+
save_inference_fetch_varnames: ["softmax_0.tmp_0", "concat_1.tmp_0"]
38+
39+
40+
hyper_parameters:
41+
sparse_feature_number: 737946
42+
sparse_feature_dim: 12
43+
num_field: 23
44+
ctr_fc_sizes: [256, 64]
45+
cvr_fc_sizes: [256, 64]
46+
global_w: 0.5
47+
counterfactual_w: 0.5
48+
expert_num: 8
49+
gate_num: 2
50+
expert_size: 16
51+
tower_size: 8
52+
feature_size: 276
53+
54+
optimizer:
55+
class: adam
56+
learning_rate: 0.001
57+
strategy: async

0 commit comments

Comments
 (0)