Skip to content

Commit ea6532b

Browse files
authored
Merge pull request #368 from yinhaofeng/readthedocs
Readthedocs
2 parents af04cbd + 6d70115 commit ea6532b

File tree

13 files changed

+94
-44
lines changed

13 files changed

+94
-44
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@
5858
| 排序 | [NFM](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/nfm/) || x || x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://dl.acm.org/doi/pdf/10.1145/3077136.3080777) |
5959
| 排序 | [AFM](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/afm/) || x || x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf) |
6060
| 排序 | [DeepFM](models/rank/deepfm/) || x || x | 2.0 | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/pdf/1703.04247.pdf) |
61-
| 排序 | [xDeepFM](models/rank/xdeepfm/) || x || x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
61+
| 排序 | [xDeepFM](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/xdeepfm) || x || x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
6262
| 排序 | [DIN](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/din/) || x || x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
6363
| 排序 | [DIEN](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/dien/) || x || x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
6464
| 排序 | [BST](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/BST/) || x || x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [DLP_KDD 2019][Behavior Sequence Transformer for E-commerce Recommendation in Alibaba](https://arxiv.org/pdf/1905.06874v1.pdf) |
@@ -67,7 +67,7 @@
6767
| 排序 | [FGCNN](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/fgcnn/) ||||| [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
6868
| 排序 | [Fibinet](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/fibinet/) ||||| [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
6969
| 排序 | [Flen](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/flen/) ||||| [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [2019][FLEN: Leveraging Field for Scalable CTR Prediction]( https://arxiv.org/pdf/1911.04690.pdf) |
70-
| 多任务 | [PLE](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/multitask/ple/) ||||| [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
70+
| 多任务 | PLE ||||| 1.8.5 | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
7171
| 多任务 | [ESMM](models/multitask/esmm/) ||||| 2.0 | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
7272
| 多任务 | [MMOE](models/multitask/mmoe/) ||||| 2.0 | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
7373
| 多任务 | [ShareBottom](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/multitask/share-bottom/) ||||| [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [1998][Multitask learning](http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-203.pdf) |

datasets/readme.md

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -17,12 +17,11 @@ sh data_process.sh
1717
| 数据集名称 | 简介 | Reference |
1818
| :----------------------------------------------: | :------------------------------------------------------------------------------------------: | :-------------------------------: |
1919
|[ag_news](https://paddle-tagspace.bj.bcebos.com/data.tar)|496835 条来自AG新闻语料库 4 大类别超过 2000 个新闻源的新闻文章,数据集仅仅援用了标题和描述字段。每个类别分别拥有 30,000 个训练样本及 1900 个测试样本。| [ComeToMyHead](http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html)|
20-
|[Ali-CCP:Alibaba Click and Conversion Prediction]( https://tianchi.aliyun.com/datalab/dataSet.html?dataId=408 )|从淘宝推荐系统的真实流量日志中收集的数据集。|[SIGIR(2018)]( https://tianchi.aliyun.com/datalab/dataSet.html?dataId=408)|
20+
|[Ali-CCP:Alibaba Click and Conversion Prediction](https://tianchi.aliyun.com/datalab/dataSet.html?dataId=408)|从淘宝推荐系统的真实流量日志中收集的数据集。|[SIGIR(2018)]( https://tianchi.aliyun.com/datalab/dataSet.html?dataId=408)|
2121
|[BQ](https://paddlerec.bj.bcebos.com/dssm%2Fbq.tar.gz)|BQ是一个智能客服中文问句匹配数据集,该数据集是自动问答系统语料,共有120,000对句子对,并标注了句子对相似度值。数据中存在错别字、语法不规范等问题,但更加贴近工业场景|--|
2222
|[Census-income Data](https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census.tar.gz )|此数据集包含从1994年和1995年美国人口普查局进行的当前人口调查中提取的加权人口普查数据。数据包含人口统计和就业相关变量。|[Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid](http://robotics.stanford.edu/~ronnyk/nbtree.pdf)|
2323
|[Criteo](https://fleet.bj.bcebos.com/ctr_data.tar.gz)|该数据集包括两部分:训练集和测试集。训练集包含一段时间内Criteo的部分流量,测试集则对应训练数据后一天的广告点击流量。|[kaggle](https://www.kaggle.com/c/criteo-display-ad-challenge/)|
2424
|[letor07](https://paddlerec.bj.bcebos.com/match_pyramid/match_pyramid_data.tar.gz)|LETOR是一套用于学习排名研究的基准数据集,其中包含标准特征、相关性判断、数据划分、评估工具和若干基线|[LETOR: Learning to Rank for Information Retrieval](https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fbeijing%2Fprojects%2Fletor%2F)|
2525
|[senti_clas](https://baidu-nlp.bj.bcebos.com/sentiment_classification-dataset-1.0.0.tar.gz)|情感倾向分析(Sentiment Classification,简称Senta)针对带有主观描述的中文文本,可自动判断该文本的情感极性类别并给出相应的置信度。情感类型分为积极、消极。情感倾向分析能够帮助企业理解用户消费习惯、分析热点话题和危机舆情监控,为企业提供有利的决策支持|--|
2626
|[one_billion](http://www.statmt.org/lm-benchmark/)|拥有十亿个单词基准,为语言建模实验提供标准的训练和测试|[One Billion Word Benchmark for Measuring Progress in Statistical Language Modeling](https://arxiv.org/abs/1312.3005)|
27-
|[MIND](https://paddlerec.bj.bcebos.com/datasets/MIND/bigdata.zip)|MIND即MIcrosoft News Dataset的简写,MIND里的数据来自Microsoft News用户的行为日志。
28-
MIND的数据集里包含了1,000,000的用户以及这些用户与160,000的文章的交互行为。|[Microsoft(2020)](https://msnews.github.io)|
27+
|[MIND](https://paddlerec.bj.bcebos.com/datasets/MIND/bigdata.zip)|MIND即MIcrosoft News Dataset的简写,MIND里的数据来自Microsoft News用户的行为日志。MIND的数据集里包含了1,000,000的用户以及这些用户与160,000的文章的交互行为。|[Microsoft(2020)](https://msnews.github.io)|

doc/benchmark.md

Lines changed: 3 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -2,12 +2,8 @@
22

33
`PaddleRec`中各模型在各种模式下的效果及性能数据将随版本迭代不断更新,欢迎持续关注并监督,如有任何问题,欢迎在[Github Issue](https://github.com/PaddlePaddle/PaddleRec/issues)提出。
44

5-
## [召回模型介绍及Benchmark](../models/recall/readme.md)
5+
## [Benchmark CtrDnn](https://github.com/PaddlePaddle/Perf/tree/master/CtrDnn)
66

7-
## [排序模型介绍及Benchmark](../models/rank/readme.md)
7+
## [Benchmark Wide&Deep](https://github.com/PaddlePaddle/Perf/tree/master/WideDeep)
88

9-
## [内容理解模型介绍及Benchmark](../models/contentunderstanding/readme.md)
10-
11-
## [多任务模型介绍及Benchmark](../models/multitask/readme.md)
12-
13-
## [树模型介绍及Benchamrk](../models/treebased/README.md)
9+
## [Benchmark Word2Vec](https://github.com/PaddlePaddle/Perf/tree/master/Word2Vec)

doc/fleet_mode.md

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,4 +36,8 @@ fleetrun --worker_num=1 --server_num=1 tools/static_ps_trainer.py -m models/rank
3636

3737
```shell
3838
fleetrun --workers="ip1:port1,ip2:port2...ipN:portN" --servers="ip1:port1,ip2:port2...ipN:portN" tools/static_ps_trainer.py -m models/rank/dnn/config.yaml
39-
```
39+
```
40+
41+
## 常用数据集
42+
这是PaddleRec的数据集的的存储库。您可以在这里方便的一键下载我们处理完成的数据集,也可以使用PaddleRec轻松测试这些数据集上不同推荐模型的性能。
43+
[推荐系统数据集](https://github.com/PaddlePaddle/PaddleRec/blob/master/datasets/readme.md)

doc/ps_background.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
1-
## [分布式训练概述](https://www.paddlepaddle.org.cn/tutorials/projectdetail/511818)
1+
## [分布式训练概述](https://fleet-x.readthedocs.io/en/latest/paddle_fleet_rst/distributed_introduction.html)
22

33

4-
## [多机多卡训练](https://www.paddlepaddle.org.cn/tutorials/projectdetail/479613)
4+
## [多机多卡训练](https://fleet-x.readthedocs.io/en/latest/paddle_fleet_rst/collective/collective_quick_start.html)
55

66

7-
## [参数服务器训练](https://www.paddlepaddle.org.cn/tutorials/projectdetail/487871)
7+
## [参数服务器训练](https://fleet-x.readthedocs.io/en/latest/paddle_fleet_rst/parameter_server/ps_quick_start.html)

doc/source/index.rst

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -41,6 +41,14 @@
4141
paddlerec/yaml.md
4242
paddlerec/benchmark.md
4343

44+
.. toctree::
45+
:maxdepth: 1
46+
:numbered:
47+
:caption: 模型介绍
48+
:name: Model introduction
49+
50+
paddlerec/model_introduce.md
51+
4452
.. toctree::
4553
:maxdepth: 1
4654
:numbered:

doc/source/paddlerec/benchmark.md

Lines changed: 3 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -2,12 +2,8 @@
22

33
`PaddleRec`中各模型在各种模式下的效果及性能数据将随版本迭代不断更新,欢迎持续关注并监督,如有任何问题,欢迎在[Github Issue](https://github.com/PaddlePaddle/PaddleRec/issues)提出。
44

5-
## [召回模型介绍及Benchmark](../models/recall/readme.md)
5+
## [Benchmark CtrDnn](https://github.com/PaddlePaddle/Perf/tree/master/CtrDnn)
66

7-
## [排序模型介绍及Benchmark](../models/rank/readme.md)
7+
## [Benchmark Wide&Deep](https://github.com/PaddlePaddle/Perf/tree/master/WideDeep)
88

9-
## [内容理解模型介绍及Benchmark](../models/contentunderstanding/readme.md)
10-
11-
## [多任务模型介绍及Benchmark](../models/multitask/readme.md)
12-
13-
## [树模型介绍及Benchamrk](../models/treebased/README.md)
9+
## [Benchmark Word2Vec](https://github.com/PaddlePaddle/Perf/tree/master/Word2Vec)

doc/source/paddlerec/fleet_mode.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -37,3 +37,7 @@ fleetrun --worker_num=1 --server_num=1 tools/static_ps_trainer.py -m models/rank
3737
```shell
3838
fleetrun --workers="ip1:port1,ip2:port2...ipN:portN" --servers="ip1:port1,ip2:port2...ipN:portN" tools/static_ps_trainer.py -m models/rank/dnn/config.yaml
3939
```
40+
41+
## 常用数据集
42+
这是PaddleRec的数据集的的存储库。您可以在这里方便的一键下载我们处理完成的数据集,也可以使用PaddleRec轻松测试这些数据集上不同推荐模型的性能。
43+
[推荐系统数据集](https://github.com/PaddlePaddle/PaddleRec/blob/master/datasets/readme.md)
Lines changed: 26 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,26 @@
1+
## [内容理解模型库](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/contentunderstanding)
2+
### [tagspace文本分类模型](https://github.com/PaddlePaddle/PaddleRec/tree/master/models/contentunderstanding/tagspace)
3+
### [textcnn文本分类模型](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/contentunderstanding/textcnn)
4+
5+
## [匹配模型库](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/match)
6+
### [DSSM文本匹配模型](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/match/dssm)
7+
### [match-pyramid文本匹配模型](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/match/match-pyramid)
8+
### [multiview-simnet文本匹配模型](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/match/multiview-simnet)
9+
10+
## [召回模型库](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/recall)
11+
### [word2vec模型](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/recall/word2vec)
12+
13+
## [排序模型库](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/rank)
14+
### [dnn模型](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/rank/dnn)
15+
### [FM模型](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/rank/fm)
16+
### [deepfm模型](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/rank/deepfm)
17+
### [logistic_regression模型](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/rank/logistic_regression)
18+
### [wide&deep模型](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/rank/wide_deep)
19+
### [gatednn模型](https://github.com/PaddlePaddle/PaddleRec/tree/master/models/rank/gateDnn)
20+
### [naml模型](https://github.com/PaddlePaddle/PaddleRec/tree/master/models/rank/naml)
21+
22+
## [多任务学习模型库](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/multitask)
23+
### [MMOE模型](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/multitask/mmoe)
24+
### [ESMM模型](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/multitask/esmm)
25+
26+
## [重排序模型库](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/rerank)
Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
1-
# 分布式深度学习介绍
1+
## 分布式学习介绍
22

3-
## [分布式训练概述](https://www.paddlepaddle.org.cn/tutorials/projectdetail/511818)
3+
## [分布式训练概述](https://fleet-x.readthedocs.io/en/latest/paddle_fleet_rst/distributed_introduction.html)
44

55

6-
## [多机多卡训练](https://www.paddlepaddle.org.cn/tutorials/projectdetail/479613)
6+
## [多机多卡训练](https://fleet-x.readthedocs.io/en/latest/paddle_fleet_rst/collective/collective_quick_start.html)
77

88

9-
## [参数服务器训练](https://www.paddlepaddle.org.cn/tutorials/projectdetail/487871)
9+
## [参数服务器训练](https://fleet-x.readthedocs.io/en/latest/paddle_fleet_rst/parameter_server/ps_quick_start.html)

0 commit comments

Comments
 (0)