Skip to content

Commit 8c76122

Browse files
[Doc] Add requirements.txt for AMGNet (#942)
* remove print code * add req for amgnet
1 parent d833a40 commit 8c76122

File tree

3 files changed

+8
-12
lines changed

3 files changed

+8
-12
lines changed

docs/zh/examples/amgnet.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,10 @@
22

33
<!-- <a href="https://aistudio.baidu.com/aistudio/projectdetail/6184070?contributionType=1&sUid=438690&shared=1&ts=1684239806160" class="md-button md-button--primary" style>AI Studio快速体验</a> -->
44

5+
!!! info "注意事项"
6+
7+
本案例运行前需通过 `pip install -r requirements.txt` 命令,安装 [**P**addle **G**raph **L**earning](https://github.com/PaddlePaddle/PGL) 图学习工具和 [PyAMG](https://github.com/pyamg/pyamg) 代数多重网格工具。
8+
59
=== "模型训练命令"
610

711
=== "amgnet_airfoil"
@@ -82,10 +86,6 @@
8286
接下来开始讲解如何将问题一步一步地转化为 PaddleScience 代码,用深度学习的方法求解该问题。
8387
为了快速理解 PaddleScience,接下来仅对模型构建、方程构建、计算域构建等关键步骤进行阐述,而其余细节请参考 [API文档](../api/arch.md)
8488

85-
!!! info "注意事项"
86-
87-
本案例运行前需通过 `pip install pgl pyamg` 命令,安装 [**P**addle **G**raph **L**earning](https://github.com/PaddlePaddle/PGL) 图学习工具和 [PyAMG](https://github.com/pyamg/pyamg) 代数多重网格工具。
88-
8989
### 3.1 数据集下载
9090

9191
该案例使用的机翼数据集 Airfoil 来自 de Avila Belbute-Peres 等人,其中翼型数据集采用 NACA0012 翼型,包括 train, test 以及对应的网格数据 mesh_fine;圆柱数据集是原作者利用软件计算的 CFD 算例。

examples/amgnet/requirements.txt

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
git+https://github.com/PaddlePaddle/PGL.git
2+
matplotlib
3+
pyamg
4+
scipy

examples/phylstm/functions.py

Lines changed: 0 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -185,15 +185,7 @@ def to_numpy_dict(dct):
185185
return {k: np.asarray(v, dtype="float32") for k, v in dct.items()}
186186

187187
input_dict_train = to_numpy_dict(input_dict_train)
188-
for k, v in input_dict_train.items():
189-
print(f"input_dict_train {k} {type(v)}")
190188
label_dict_train = to_numpy_dict(label_dict_train)
191-
for k, v in label_dict_train.items():
192-
print(f"label_dict_train {k} {type(v)}")
193189
input_dict_val = to_numpy_dict(input_dict_val)
194-
for k, v in input_dict_val.items():
195-
print(f"input_dict_val {k} {type(v)}")
196190
label_dict_val = to_numpy_dict(label_dict_val)
197-
for k, v in label_dict_val.items():
198-
print(f"label_dict_val {k} {type(v)}")
199191
return input_dict_train, label_dict_train, input_dict_val, label_dict_val

0 commit comments

Comments
 (0)