Skip to content

Commit a8fd230

Browse files
Fix doc (#1205)
* fix user_guide * fix doc
1 parent 94f81a2 commit a8fd230

File tree

5 files changed

+29
-12
lines changed

5 files changed

+29
-12
lines changed

docs/zh/user_guide.md

Lines changed: 25 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -994,10 +994,13 @@ best_value: 0.02460772916674614
994994
995995
接下来以 `examples/pipe/poiseuille_flow.py` 为例,介绍如何正确使用 PaddleScience 的数据并行功能进行训练。分布式训练细节可以参考:[Paddle-使用指南-分布式训练-快速开始-数据并行](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/06_distributed_training/cluster_quick_start_collective_cn.html)。
996996
997-
1. 在 constraint 实例化完毕后,将 `ITERS_PER_EPOCH` 重新赋值为经过自动多卡数据切分后的 `dataloader` 的长度(一般情况下其长度等于单卡 dataloader 的长度除以卡数,向上取整),如代码中高亮行所示。
997+
1. 在 constraint 实例化完毕后,将 `ITERS_PER_EPOCH` 重新赋值为经过自动多卡数据切分后的 `dataloader` 的长度,再作为参数传递给 `Solver`(一般情况下其长度等于单卡 dataloader 的长度除以卡数,向上取整),如代码中高亮行所示。
998998
999-
``` py linenums="146" title="examples/pipe/poiseuille_flow.py" hl_lines="22"
1000-
ITERS_PER_EPOCH = int((N_x * N_y * N_p) / BATCH_SIZE)
999+
``` py linenums="146" title="examples/pipe/poiseuille_flow.py" hl_lines="28 37"
1000+
# set constraint
1001+
ITERS_PER_EPOCH = int(
1002+
(cfg.N_x * cfg.N_y * cfg.N_p) / cfg.TRAIN.batch_size.pde_constraint
1003+
)
10011004
10021005
pde_constraint = ppsci.constraint.InteriorConstraint(
10031006
equation["NavierStokes"].equations,
@@ -1006,22 +1009,36 @@ best_value: 0.02460772916674614
10061009
dataloader_cfg={
10071010
"dataset": "NamedArrayDataset",
10081011
"num_workers": 1,
1009-
"batch_size": BATCH_SIZE,
1012+
"batch_size": cfg.TRAIN.batch_size.pde_constraint,
10101013
"iters_per_epoch": ITERS_PER_EPOCH,
10111014
"sampler": {
10121015
"name": "BatchSampler",
1016+
"shuffle": False,
1017+
"drop_last": False,
10131018
},
10141019
},
10151020
loss=ppsci.loss.MSELoss("mean"),
10161021
evenly=True,
10171022
name="EQ",
10181023
)
1019-
ITERS_PER_EPOCH = len(pde_constraint.data_loader) # re-assign to ITERS_PER_EPOCH
1020-
10211024
# wrap constraints together
10221025
constraint = {pde_constraint.name: pde_constraint}
1023-
...
1024-
...
1026+
1027+
ITERS_PER_EPOCH = len(pde_constraint.data_loader) # re-assign to ITERS_PER_EPOCH
1028+
1029+
# initialize solver
1030+
solver = ppsci.solver.Solver(
1031+
model,
1032+
constraint,
1033+
cfg.output_dir,
1034+
optimizer,
1035+
epochs=cfg.TRAIN.epochs,
1036+
iters_per_epoch=ITERS_PER_EPOCH,
1037+
eval_during_train=cfg.TRAIN.eval_during_train,
1038+
save_freq=cfg.TRAIN.save_freq,
1039+
equation=equation,
1040+
)
1041+
solver.train()
10251042
```
10261043
10271044
2. 使用分布式训练命令启动训练,以 4 卡数据并行训练为例

ppsci/externals/paddle_sparse

ppsci/externals/warp

Submodule warp updated 220 files

0 commit comments

Comments
 (0)