|
| 1 | +default: &DEFAULT |
| 2 | + num_data_workers: 1 |
| 3 | + # model |
| 4 | + model: 'fno' |
| 5 | + depth: 5 |
| 6 | + in_dim: 2 |
| 7 | + out_dim: 1 |
| 8 | + dropout: 0 |
| 9 | + # data/domain |
| 10 | + Lx: !!float 1.0 |
| 11 | + Ly: !!float 1.0 |
| 12 | + nx: 256 |
| 13 | + ny: 256 |
| 14 | + # optimization |
| 15 | + optimizer: 'adam' |
| 16 | + scheduler: 'none' |
| 17 | + learning_rate: !!float 1.0 |
| 18 | + max_epochs: 500 |
| 19 | + scheduler_epochs: 500 |
| 20 | + weight_decay: 0 |
| 21 | + batch_size: 25 |
| 22 | + # misc |
| 23 | + log_to_screen: !!bool False |
| 24 | + save_checkpoint: !!bool False |
| 25 | + seed: 0 |
| 26 | + plot_figs: !!bool False |
| 27 | + pack_data: !!bool False |
| 28 | + # Weights & Biases |
| 29 | + entity: 'entity_name' |
| 30 | + project: 'proj_name' |
| 31 | + group: 'helmholtz' |
| 32 | + log_to_wandb: !!bool False |
| 33 | + distill: !!bool False |
| 34 | + subsample: 1 |
| 35 | + exp_dir: './exp/' |
| 36 | + tie_fields: !!bool False |
| 37 | + use_all_fields: !!bool True |
| 38 | + tie_batches: !!bool False |
| 39 | + model_type: fno |
| 40 | + pretrained: False |
| 41 | + warmup_steps: 0 |
| 42 | + epoch_size: 1 |
| 43 | + accum_grad: 1 |
| 44 | + enable_amp: !!bool False |
| 45 | + log_interval: 1 |
| 46 | + checkpoint_save_interval: 10 |
| 47 | + debug_grad: False |
| 48 | + |
| 49 | +helmholtz: &helmholtz |
| 50 | + <<: *DEFAULT |
| 51 | + n_demos: 0 |
| 52 | + batch_size: 128 |
| 53 | + nx: 128 |
| 54 | + ny: 128 |
| 55 | + log_to_wandb: !!bool True |
| 56 | + save_checkpoint: !!bool True |
| 57 | + max_epochs: 500 |
| 58 | + scheduler: 'cosine' |
| 59 | + |
| 60 | + model: 'fno' |
| 61 | + layers: [64, 64, 64, 64, 64] |
| 62 | + modes1: [65, 65, 65, 65] |
| 63 | + modes2: [65, 65, 65, 65] |
| 64 | + fc_dim: 128 |
| 65 | + |
| 66 | + in_dim: 2 |
| 67 | + out_dim: 1 |
| 68 | + mode_cut: 32 |
| 69 | + embed_cut: 64 |
| 70 | + fc_cut: 2 |
| 71 | + |
| 72 | + optimizer: 'adam' |
| 73 | + |
| 74 | + learning_rate: 1E-3 |
| 75 | + pack_data: !!bool False |
| 76 | + |
| 77 | +helm-64-scale-o5_15: &helm_64_o5_15 |
| 78 | + <<: *helmholtz |
| 79 | + train_path: '/path/to/helmholtz_64_o5_15_train.h5' |
| 80 | + val_path: '/path/to/helmholtz_64_o5_15_val.h5' |
| 81 | + test_path: '/path/to/helmholtz_64_o5_15_test.h5' |
| 82 | + scales_path: '/path/to/helmholtz_64_o5_15_train_scale.npy' |
| 83 | + # train_rand_idx_path: '/path/to/old_gen/train_rand_idx.npy' |
| 84 | + batch_size: 128 |
| 85 | + in_dim: 3 |
| 86 | + out_dim: 1 |
| 87 | + mode_cut: 32 |
| 88 | + embed_cut: 64 |
| 89 | + fc_cut: 2 |
| 90 | + learning_rate: 1E-3 |
| 91 | + subsample: 1 |
| 92 | + nx: 64 |
| 93 | + ny: 64 |
| 94 | + |
| 95 | + pt: "train" |
| 96 | + pt_split: [46080, 8192] |
| 97 | + pretrained: False |
| 98 | + |
| 99 | + |
| 100 | +helm-64-pretrain-o1_20: &helm_64_o1_20_pt |
| 101 | + <<: *helmholtz |
| 102 | + train_path: '/path/to/helmholtz_64_o1_20_train.h5' |
| 103 | + val_path: '/path/to/helmholtz_64_o1_20_val.h5' |
| 104 | + test_path: '/path/to/helmholtz_64_o1_20_test.h5' |
| 105 | + scales_path: '/path/to/helmholtz_64_o1_20_train_scale.npy' |
| 106 | + train_rand_idx_path: '/path/to/train_rand_idx.npy' |
| 107 | + batch_size: 128 |
| 108 | + in_dim: 3 |
| 109 | + out_dim: 1 |
| 110 | + mode_cut: 32 |
| 111 | + embed_cut: 64 |
| 112 | + fc_cut: 2 |
| 113 | + learning_rate: 1E-3 |
| 114 | + subsample: 1 |
| 115 | + nx: 64 |
| 116 | + ny: 64 |
| 117 | + pt: "pretrain" |
| 118 | + pt_split: [46080, 8192] #[0.9, 0.1] |
| 119 | + blur: [0, 1] |
| 120 | + |
| 121 | +helm-64-pretrain-o1_20_ft: &helm_64_o1_20_ft |
| 122 | + <<: *helm_64_o1_20_pt |
| 123 | + pt: "train" |
| 124 | + fix_backbone: False |
| 125 | + |
| 126 | + |
| 127 | +helm-64-finetune-o5_15: &helm_64_o5_15_ft |
| 128 | + <<: *helmholtz |
| 129 | + train_path: '/path/to/helmholtz_64_o5_15_train.h5' |
| 130 | + val_path: '/path/to/helmholtz_64_o5_15_val.h5' |
| 131 | + test_path: '/path/to/helmholtz_64_o5_15_test.h5' |
| 132 | + scales_path: '/path/to/helmholtz_64_o5_15_train_scale.npy' |
| 133 | + train_rand_idx_path: '/path/to/train_rand_idx.npy' |
| 134 | + batch_size: 128 |
| 135 | + in_dim: 3 #normal helmholtz has 3 dim, joint has 4 |
| 136 | + out_dim: 1 |
| 137 | + mode_cut: 32 |
| 138 | + embed_cut: 64 |
| 139 | + fc_cut: 2 |
| 140 | + learning_rate: 1E-3 |
| 141 | + subsample: 1 |
| 142 | + nx: 64 |
| 143 | + ny: 64 |
| 144 | + pt: "train" |
| 145 | + pt_split: [46080, 8192] |
| 146 | + fix_backbone: False |
| 147 | + pretrained: True |
| 148 | + pretrained_ckpt_path: /pretrained_ckpt_path/training_checkpoints/ckpt.tar |
| 149 | + |
| 150 | +helm-64-o5_15_ft0: &helm_64_o5_15_ft0 |
| 151 | + <<: *helm_64_o5_15_ft |
| 152 | + subsample: 1 |
| 153 | + |
| 154 | +helm-64-o5_15_ft0_r0: &helm_64_o5_15_ft0_r0 |
| 155 | + <<: *helm_64_o5_15_ft |
| 156 | + subsample: 1 |
| 157 | + |
| 158 | +helm-64-o5_15_ft0_r1: &helm_64_o5_15_ft0_r1 |
| 159 | + <<: *helm_64_o5_15_ft |
| 160 | + subsample: 1 |
| 161 | + seed: 1 |
| 162 | + |
| 163 | +helm-64-o5_15_ft0_r2: &helm_64_o5_15_ft0_r2 |
| 164 | + <<: *helm_64_o5_15_ft |
| 165 | + subsample: 1 |
| 166 | + seed: 2 |
| 167 | + |
| 168 | +helm-64-o5_15_ft1: &helm_64_o5_15_ft1 |
| 169 | + <<: *helm_64_o5_15_ft |
| 170 | + subsample: 2 |
| 171 | + |
| 172 | +helm-64-o5_15_ft1_r0: &helm_64_o5_15_ft1_r0 |
| 173 | + <<: *helm_64_o5_15_ft |
| 174 | + subsample: 2 |
| 175 | + |
| 176 | +helm-64-o5_15_ft2: &helm_64_o5_15_ft2 |
| 177 | + <<: *helm_64_o5_15_ft |
| 178 | + subsample: 4 |
| 179 | + |
| 180 | +helm-64-o5_15_ft2_r0: &helm_64_o5_15_ft2_r0 |
| 181 | + <<: *helm_64_o5_15_ft |
| 182 | + subsample: 4 |
| 183 | + |
| 184 | +helm-64-o5_15_ft3_r1: &helm_64_o5_15_ft3_r1 |
| 185 | + <<: *helm_64_o5_15_ft |
| 186 | + subsample: 8 |
| 187 | + seed: 1 |
| 188 | + |
| 189 | +helm-64-o5_15_ft3_r2: &helm_64_o5_15_ft3_r2 |
| 190 | + <<: *helm_64_o5_15_ft |
| 191 | + subsample: 8 |
| 192 | + seed: 2 |
| 193 | + |
| 194 | +helm-64-o5_15_ft3_r0: &helm_64_o5_15_ft3_r0 |
| 195 | + <<: *helm_64_o5_15_ft |
| 196 | + subsample: 8 |
| 197 | + seed: 0 |
| 198 | + |
| 199 | +helm-64-o5_15_ft3_r3: &helm_64_o5_15_ft3_r3 |
| 200 | + <<: *helm_64_o5_15_ft |
| 201 | + subsample: 8 |
| 202 | + seed: 3 |
| 203 | + |
| 204 | +helm-64-o5_15_ft4_r0: &helm_64_o5_15_ft4_r0 |
| 205 | + <<: *helm_64_o5_15_ft |
| 206 | + subsample: 16 |
| 207 | + seed: 0 |
| 208 | + |
| 209 | +helm-64-o5_15_ft4_r3: &helm_64_o5_15_ft4_r3 |
| 210 | + <<: *helm_64_o5_15_ft |
| 211 | + subsample: 16 |
| 212 | + seed: 3 |
| 213 | + |
| 214 | +helm-64-o5_15_ft4_r1: &helm_64_o5_15_ft4_r1 |
| 215 | + <<: *helm_64_o5_15_ft |
| 216 | + subsample: 16 |
| 217 | + seed: 1 |
| 218 | + |
| 219 | +helm-64-o5_15_ft4_r2: &helm_64_o5_15_ft4_r2 |
| 220 | + <<: *helm_64_o5_15_ft |
| 221 | + subsample: 16 |
| 222 | + seed: 2 |
| 223 | + |
| 224 | +helm-64-o5_15_ft5_r1: &helm_64_o5_15_ft5_r1 |
| 225 | + <<: *helm_64_o5_15_ft |
| 226 | + subsample: 32 |
| 227 | + seed: 1 |
| 228 | + |
| 229 | +helm-64-o5_15_ft5_r0: &helm_64_o5_15_ft5_r0 |
| 230 | + <<: *helm_64_o5_15_ft |
| 231 | + subsample: 32 |
| 232 | + seed: 0 |
| 233 | + |
| 234 | +helm-64-o5_15_ft5_r2: &helm_64_o5_15_ft5_r2 |
| 235 | + <<: *helm_64_o5_15_ft |
| 236 | + subsample: 32 |
| 237 | + seed: 2 |
| 238 | + |
| 239 | +helm-64-o5_15_ft6_r0: &helm_64_o5_15_ft6_r0 |
| 240 | + <<: *helm_64_o5_15_ft |
| 241 | + subsample: 64 |
| 242 | + seed: 0 |
| 243 | + |
| 244 | +helm-64-o5_15_ft6_r1: &helm_64_o5_15_ft6_r1 |
| 245 | + <<: *helm_64_o5_15_ft |
| 246 | + subsample: 64 |
| 247 | + seed: 1 |
| 248 | + |
| 249 | +helm-64-o5_15_ft6_r2: &helm_64_o5_15_ft6_r2 |
| 250 | + <<: *helm_64_o5_15_ft |
| 251 | + subsample: 64 |
| 252 | + seed: 2 |
| 253 | + |
| 254 | +helm-64-o5_15_ft7_r0: &helm_64_o5_15_ft7_r0 |
| 255 | + <<: *helm_64_o5_15_ft |
| 256 | + subsample: 128 |
| 257 | + # learning_rate: 1E-5 |
| 258 | + batch_size: 64 |
| 259 | + seed: 0 |
| 260 | + |
| 261 | +helm-64-o5_15_ft7_r1: &helm_64_o5_15_ft7_r1 |
| 262 | + <<: *helm_64_o5_15_ft |
| 263 | + subsample: 128 |
| 264 | + # learning_rate: 1E-5 |
| 265 | + batch_size: 64 |
| 266 | + seed: 1 |
| 267 | + |
| 268 | +helm-64-o5_15_ft7_r2: &helm_64_o5_15_ft7_r2 |
| 269 | + <<: *helm_64_o5_15_ft |
| 270 | + subsample: 128 |
| 271 | + # learning_rate: 1E-5 |
| 272 | + batch_size: 64 |
| 273 | + seed: 2 |
| 274 | + |
| 275 | +helm-64-o5_15_ft8_r0: &helm_64_o5_15_ft8_r0 |
| 276 | + <<: *helm_64_o5_15_ft |
| 277 | + subsample: 256 |
| 278 | + # learning_rate: 1E-5 |
| 279 | + batch_size: 32 |
| 280 | + seed: 0 |
| 281 | + |
| 282 | +helm-64-o5_15_ft9_r0: &helm_64_o5_15_ft9_r0 |
| 283 | + <<: *helm_64_o5_15_ft |
| 284 | + subsample: 512 |
| 285 | + # learning_rate: 1E-5 |
| 286 | + batch_size: 16 |
| 287 | + seed: 0 |
| 288 | + |
| 289 | +helm-64-pretrain-o1_20_m0: &helm-64-o1_20_pt_m0 |
| 290 | + <<: *helm_64_o1_20_pt |
| 291 | + mask_ratio: 0. |
| 292 | + |
| 293 | +helm-64-pretrain-o1_20_m1: &helm-64-o1_20_pt_m1 |
| 294 | + <<: *helm_64_o1_20_pt |
| 295 | + mask_ratio: 0.1 |
| 296 | + |
| 297 | +helm-64-pretrain-o1_20_m2: &helm-64-o1_20_pt_m2 |
| 298 | + <<: *helm_64_o1_20_pt |
| 299 | + mask_ratio: 0.2 |
| 300 | + |
| 301 | +helm-64-pretrain-o1_20_m3: &helm-64-o1_20_pt_m3 |
| 302 | + <<: *helm_64_o1_20_pt |
| 303 | + mask_ratio: 0.3 |
| 304 | + |
| 305 | +helm-64-pretrain-o1_20_m4: &helm-64-o1_20_pt_m4 |
| 306 | + <<: *helm_64_o1_20_pt |
| 307 | + mask_ratio: 0.4 |
| 308 | + |
| 309 | +helm-64-pretrain-o1_20_m5: &helm-64-o1_20_pt_m5 |
| 310 | + <<: *helm_64_o1_20_pt |
| 311 | + mask_ratio: 0.5 |
| 312 | + |
| 313 | +helm-64-pretrain-o1_20_m6: &helm-64-o1_20_pt_m6 |
| 314 | + <<: *helm_64_o1_20_pt |
| 315 | + mask_ratio: 0.6 |
| 316 | + |
| 317 | +helm-64-pretrain-o1_20_m7: &helm-64-o1_20_pt_m7 |
| 318 | + <<: *helm_64_o1_20_pt |
| 319 | + mask_ratio: 0.7 |
| 320 | + |
| 321 | +helm-64-pretrain-o1_20_m8: &helm-64-o1_20_pt_m8 |
| 322 | + <<: *helm_64_o1_20_pt |
| 323 | + mask_ratio: 0.8 |
| 324 | + |
| 325 | +helm-64-pretrain-o1_20_m9: &helm-64-o1_20_pt_m9 |
| 326 | + <<: *helm_64_o1_20_pt |
| 327 | + mask_ratio: 0.9 |
| 328 | + |
| 329 | +helm-64-o5_15_bsln: &helm_64_o5_15_baseline |
| 330 | + <<: *helm_64_o5_15 |
| 331 | + pt: "train" |
| 332 | + pt_split: [0, 1] |
| 333 | + |
| 334 | +helm-64-o5_15_b0: &helm-64-o1_10_ss4 |
| 335 | + <<: *helm_64_o5_15_baseline |
| 336 | + subsample: 4 |
| 337 | + |
| 338 | +helm-64-o5_15_b1: &helm-64-o1_10_ss8 |
| 339 | + <<: *helm_64_o5_15_baseline |
| 340 | + subsample: 8 |
| 341 | + |
| 342 | +helm-64-o5_15_b2: &helm-64-o1_10_ss16 |
| 343 | + <<: *helm_64_o5_15_baseline |
| 344 | + subsample: 16 |
| 345 | + |
| 346 | +helm-64-o5_15_b3: &helm-64-o1_10_ss32 |
| 347 | + <<: *helm_64_o5_15_baseline |
| 348 | + subsample: 32 |
| 349 | + |
| 350 | +helm-64-o5_15_b4: &helm-64-o1_10_ss64 |
| 351 | + <<: *helm_64_o5_15_baseline |
| 352 | + subsample: 64 |
| 353 | + |
| 354 | +helm-64-o5_15_b5: &helm-64-o1_10_ss128 |
| 355 | + <<: *helm_64_o5_15_baseline |
| 356 | + subsample: 128 |
| 357 | + |
| 358 | +helm-64-o5_15_b6: &helm-64-o1_10_ss256 |
| 359 | + <<: *helm_64_o5_15_baseline |
| 360 | + subsample: 256 |
| 361 | + |
| 362 | +helm-64-o5_15_b7: &helm-64-o1_10_ss512 |
| 363 | + <<: *helm_64_o5_15_baseline |
| 364 | + subsample: 512 |
| 365 | + batch_size: 64 |
| 366 | + |
| 367 | +helm-64-o5_15_b8: &helm-64-o1_10_ss1024 |
| 368 | + <<: *helm_64_o5_15_baseline |
| 369 | + subsample: 1024 |
| 370 | + batch_size: 32 |
| 371 | + |
| 372 | +helm-64-o5_15_b9: &helm-64-o1_10_ss2048 |
| 373 | + <<: *helm_64_o5_15_baseline |
| 374 | + subsample: 2048 |
| 375 | + batch_size: 16 |
0 commit comments