Skip to content

Commit d9ef780

Browse files
authored
add LNP CGCNN MoFLow IFM links in README file (#1125)
* add LNP CGCNN MoFLow IFM links in README file * add lno cgcnn links in index.md
1 parent 14fb97a commit d9ef780

File tree

2 files changed

+7
-0
lines changed

2 files changed

+7
-0
lines changed

README.md

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -54,6 +54,7 @@ PaddleScience 是一个基于深度学习框架 PaddlePaddle 开发的科学计
5454
| 域分解 | [XPINN](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/xpinns) | 机理驱动 | MLP | 无监督学习 | - | [Paper](https://doi.org/10.4208/cicp.OA-2020-0164)|
5555
| 布鲁塞尔扩散系统 | [3D-Brusselator](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/brusselator3d) | 数据驱动 | LNO | 监督学习 | - | [Paper](https://arxiv.org/abs/2303.10528)|
5656
| 符号回归 | [Transformer4SR](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/transformer4sr.md) | 数据驱动 | Transformer | 监督学习 | - | [Paper](https://arxiv.org/abs/2312.04070)|
57+
| 算子学习 | [隐空间神经算子LNO](https://github.com/L-I-M-I-T/LatentNeuralOperator) | 数据驱动 | Transformer | 监督学习 | - | [Paper](https://arxiv.org/abs/2406.03923)|
5758

5859
<br>
5960
<p align="center"><b>技术科学(AI for Technology)</b></p>
@@ -102,6 +103,10 @@ PaddleScience 是一个基于深度学习框架 PaddlePaddle 开发的科学计
102103
| 问题类型 | 案例名称 | 优化算法 | 模型类型 | 训练方式 | 数据集 | 参考资料 |
103104
|-----|---------|-----|---------|----|---------|---------|
104105
| 材料设计 | [散射板设计(反问题)](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/hpinns) | 数理融合 | 数据驱动 | 监督学习 | [Train Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/hPINNs/hpinns_holo_train.mat)<br>[Eval Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/hPINNs/hpinns_holo_valid.mat) | [Paper](https://arxiv.org/pdf/2102.04626.pdf) |
106+
| 晶体材料属性预测 | [CGCNN](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/cgcnn/) | 数据驱动 | GNN | 监督学习 | [MP](https://next-gen.materialsproject.org/) / [Perovskite](https://cmr.fysik.dtu.dk/cubic_perovskites/cubic_perovskites.html) / [C2DB](https://cmr.fysik.dtu.dk/c2db/c2db.html) / [test](https://paddle-org.bj.bcebos.com/paddlescience%2Fdatasets%2Fcgcnn%2Fcgcnn-test.zip) | [Paper](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.145301) |
107+
| 分子生成 | [MoFlow](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/moflow/) | 数据驱动 | Flow Model | 监督学习 | [qm9/ zink250k](https://aistudio.baidu.com/datasetdetail/282687) | [Paper](https://arxiv.org/abs/2006.10137v1) |
108+
| 分子属性预测 | [IFM](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/ifm/) | 数据驱动 | MLP | 监督学习 | [tox21/sider/hiv/bace/bbbp](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/ifm/#:~:text=molecules%20%E6%95%B0%E6%8D%AE%E9%9B%86-,dataset.zip,-%EF%BC%8C%E6%88%96Google%20Drive) | [Paper](https://openreview.net/pdf?id=NLFqlDeuzt) |
109+
105110

106111
<br>
107112
<p align="center"><b>地球科学(AI for Earth Science)</b></p>

docs/index.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -90,6 +90,7 @@
9090
| 域分解 | [XPINN](./zh/examples/xpinns.md) | 机理驱动 | MLP | 无监督学习 | - | [Paper](https://doi.org/10.4208/cicp.OA-2020-0164)|
9191
| 布鲁塞尔扩散系统 | [3D-Brusselator](./zh/examples/brusselator3d.md) | 数据驱动 | LNO | 监督学习 | - | [Paper](https://arxiv.org/abs/2303.10528)|
9292
| 符号回归 | [Transformer4SR](./zh/examples/transformer4sr.md) | 数据驱动 | Transformer | 监督学习 | - | [Paper](https://arxiv.org/abs/2312.04070)|
93+
| 算子学习 | [隐空间神经算子LNO](https://github.com/L-I-M-I-T/LatentNeuralOperator) | 数据驱动 | Transformer | 监督学习 | - | [Paper](https://arxiv.org/abs/2406.03923)|
9394

9495
<br>
9596
<p align="center"><b>技术科学(AI for Technology)</b></p>
@@ -138,6 +139,7 @@
138139
| 问题类型 | 案例名称 | 优化算法 | 模型类型 | 训练方式 | 数据集 | 参考资料 |
139140
|-----|---------|-----|---------|----|---------|---------|
140141
| 材料设计 | [散射板设计(反问题)](./zh/examples/hpinns.md) | 机理驱动 | Transformer | 无监督学习 | [Train Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/hPINNs/hpinns_holo_train.mat)<br>[Eval Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/hPINNs/hpinns_holo_valid.mat) | [Paper](https://arxiv.org/pdf/2102.04626.pdf) |
142+
| 晶体材料属性预测 | [CGCNN](./zh/examples/cgcnn.md) | 数据驱动 | GNN | 监督学习 | [MP](https://next-gen.materialsproject.org/) / [Perovskite](https://cmr.fysik.dtu.dk/cubic_perovskites/cubic_perovskites.html) / [C2DB](https://cmr.fysik.dtu.dk/c2db/c2db.html) / [test](https://paddle-org.bj.bcebos.com/paddlescience%2Fdatasets%2Fcgcnn%2Fcgcnn-test.zip) | [Paper](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.145301) |
141143

142144
<br>
143145
<p align="center"><b>地球科学(AI for Earth Science)</b></p>

0 commit comments

Comments
 (0)