@@ -14,13 +14,15 @@ default: &DEFAULT
14
14
# optimization
15
15
optimizer : ' adam'
16
16
scheduler : ' none'
17
+ loss_style : ' mean'
18
+ loss_func : ' mse'
17
19
learning_rate : !!float 1.0
18
20
max_epochs : 500
19
21
scheduler_epochs : 500
20
22
weight_decay : 0
21
23
batch_size : 25
22
24
# misc
23
- log_to_screen : !!bool False
25
+ log_to_screen : !!bool True
24
26
save_checkpoint : !!bool False
25
27
seed : 0
26
28
plot_figs : !!bool False
@@ -43,7 +45,7 @@ default: &DEFAULT
43
45
accum_grad : 1
44
46
enable_amp : !!bool False
45
47
log_interval : 1
46
- checkpoint_save_interval : 10
48
+ checkpoint_save_interval : 250
47
49
debug_grad : False
48
50
49
51
helmholtz : &helmholtz
@@ -52,7 +54,7 @@ helmholtz: &helmholtz
52
54
batch_size : 128
53
55
nx : 128
54
56
ny : 128
55
- log_to_wandb : !!bool True
57
+ log_to_wandb : !!bool False
56
58
save_checkpoint : !!bool True
57
59
max_epochs : 500
58
60
scheduler : ' cosine'
@@ -76,11 +78,11 @@ helmholtz: &helmholtz
76
78
77
79
helm-64-scale-o5_15 : &helm_64_o5_15
78
80
<< : *helmholtz
79
- train_path : ' /path/to /helmholtz_64_o5_15_train.h5'
80
- val_path : ' /path/to /helmholtz_64_o5_15_val.h5'
81
- test_path : ' /path/to /helmholtz_64_o5_15_test.h5'
82
- scales_path : ' /path/to /helmholtz_64_o5_15_train_scale.npy'
83
- # train_rand_idx_path: '/path/to /old_gen/train_rand_idx.npy'
81
+ train_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /helmholtz_64_o5_15_train.h5'
82
+ val_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /helmholtz_64_o5_15_val.h5'
83
+ test_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /helmholtz_64_o5_15_test.h5'
84
+ scales_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /helmholtz_64_o5_15_train_scale.npy'
85
+ # train_rand_idx_path: '/home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /old_gen/train_rand_idx.npy'
84
86
batch_size : 128
85
87
in_dim : 3
86
88
out_dim : 1
@@ -99,11 +101,11 @@ helm-64-scale-o5_15: &helm_64_o5_15
99
101
100
102
helm-64-pretrain-o1_20 : &helm_64_o1_20_pt
101
103
<< : *helmholtz
102
- train_path : ' /path/to /helmholtz_64_o1_20_train.h5'
103
- val_path : ' /path/to /helmholtz_64_o1_20_val.h5'
104
- test_path : ' /path/to /helmholtz_64_o1_20_test.h5'
105
- scales_path : ' /path/to /helmholtz_64_o1_20_train_scale.npy'
106
- train_rand_idx_path : ' /path/to /train_rand_idx.npy'
104
+ train_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /helmholtz_64_o1_20_train.h5'
105
+ val_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /helmholtz_64_o1_20_val.h5'
106
+ test_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /helmholtz_64_o1_20_test.h5'
107
+ scales_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /helmholtz_64_o1_20_train_scale.npy'
108
+ train_rand_idx_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /train_rand_idx.npy'
107
109
batch_size : 128
108
110
in_dim : 3
109
111
out_dim : 1
@@ -126,11 +128,11 @@ helm-64-pretrain-o1_20_ft: &helm_64_o1_20_ft
126
128
127
129
helm-64-finetune-o5_15 : &helm_64_o5_15_ft
128
130
<< : *helmholtz
129
- train_path : ' /path/to /helmholtz_64_o5_15_train.h5'
130
- val_path : ' /path/to /helmholtz_64_o5_15_val.h5'
131
- test_path : ' /path/to /helmholtz_64_o5_15_test.h5'
132
- scales_path : ' /path/to /helmholtz_64_o5_15_train_scale.npy'
133
- train_rand_idx_path : ' /path/to /train_rand_idx.npy'
131
+ train_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /helmholtz_64_o5_15_train.h5'
132
+ val_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /helmholtz_64_o5_15_val.h5'
133
+ test_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /helmholtz_64_o5_15_test.h5'
134
+ scales_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /helmholtz_64_o5_15_train_scale.npy'
135
+ train_rand_idx_path : ' /home/aistudio/data_efficient_nopt/data/helmholtz_64/helmholtz_64 /train_rand_idx.npy'
134
136
batch_size : 128
135
137
in_dim : 3 # normal helmholtz has 3 dim, joint has 4
136
138
out_dim : 1
0 commit comments